A352256 a(n) is the least k such that A033273(k) is equal to (A033273(n*k + 1) - 1)/n where A033273(n) is the number of nonprime divisors of n.
3, 13, 5, 41, 11, 2479, 23, 73, 103, 2249, 19, 7177, 211, 691, 3089, 1289, 53263, 726493, 41, 1597, 2243, 64406, 13129, 31351, 983, 1579, 197, 43037, 1411, 38246575, 389, 3607, 15403, 61286, 709, 1638349, 3587, 16249, 3585641, 1017119, 1292839, 132347, 593, 32203, 51963
Offset: 1
Keywords
Examples
a(2) = 13 because A033273(13) = (A033273(2*13 + 1) - 1)/2 = (A033273(27) - 1)/2 = 1.
Programs
-
Mathematica
f[n_] := DivisorSigma[0, n] - PrimeNu[n]; a[n_] := Module[{k = 2}, While[f[k] != (f[n*k + 1] - 1)/n, k++]; k]; Array[a, 29] (* Amiram Eldar, Mar 10 2022 *)
-
PARI
f(n) = numdiv(n) - omega(n); \\ A033273 a(n) = my(k=2); while (f(k) != (f(n*k + 1) - 1)/n, k++); k; \\ Michel Marcus, Mar 10 2022