A352276 a(0) = 1 and a(n) = Sum_{k = 0..3*n} n/(n + 2*k)*binomial(n + 2*k,k) for n >= 1.
1, 9, 625, 58785, 5986993, 633580634, 68611922731, 7545931449401, 839183314181297, 94112350842056469, 10623982584664109750, 1205644823097085684641, 137414820511792364274091, 15718880489100999321142976, 1803621273322664188151352631, 207499462144488863314062180035
Offset: 0
Examples
Examples of supercongruences: a(11) - a(1) = 1205644823097085684641 - 9 = (2^3)*3*(11^3)*43*2887*5059* 60096637 == 0 (mod 11^3) a(3*5) - a(3) = 207499462144488863314062180035 - 58785 = 2*(5^4)*1801* 4959701*18583938263214197 == 0 (mod 5^4)
Links
- Paolo Xausa, Table of n, a(n) for n = 0..475
- R. Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862--2012), arXiv:1111.3057 [math.NT], 2011.
Programs
-
Mathematica
nterms=25;Join[{1},Table[Sum[n/(n+2k)Binomial[n+2k,k],{k,0,3n}],{n,nterms-1}]] (* Paolo Xausa, Apr 10 2022 *)
Formula
a(n) ~ 7^(7*n + 3/2) / (37 * sqrt(Pi*n) * 2^(8*n + 3/2) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Mar 15 2022
Comments