cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352276 a(0) = 1 and a(n) = Sum_{k = 0..3*n} n/(n + 2*k)*binomial(n + 2*k,k) for n >= 1.

Original entry on oeis.org

1, 9, 625, 58785, 5986993, 633580634, 68611922731, 7545931449401, 839183314181297, 94112350842056469, 10623982584664109750, 1205644823097085684641, 137414820511792364274091, 15718880489100999321142976, 1803621273322664188151352631, 207499462144488863314062180035
Offset: 0

Views

Author

Peter Bala, Mar 10 2022

Keywords

Comments

The following identity can be easily verified using Maple's SumTools:-Summation procedure: for n >= 1, A005810(n) = binomial(4*n,n) = Sum_{k = 0..3*n} n/(n + k)*binomial(n + k,k).
The binomial coefficients A005810(n) are known to satisfy the supercongruences A005810(n*p^r) == A005810(n*p^(r-1)) (mod p^(3*r)) for primes p >= 5 and positive integers n and r (see Meštrović, equation 39).
Calculation suggests that the present sequence satisfies the same congruences.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for primes p >= 5 and positive integers n and r.
More generally, for m a positive integer, define a sequence u_m by setting u_m(n) = Sum_{k = 0..m*n} n/(n + 2*k)*binomial(n + 2*k,k) for n >= 1.
Then we conjecture that each sequence u_m satisfies the above supercongruences. This is the case m = 3. See A333093 (case m = 1) and A352275 (m = 2).

Examples

			Examples of supercongruences:
a(11) - a(1) = 1205644823097085684641 - 9 = (2^3)*3*(11^3)*43*2887*5059* 60096637 == 0 (mod 11^3)
a(3*5) - a(3) = 207499462144488863314062180035 - 58785 = 2*(5^4)*1801* 4959701*18583938263214197 == 0 (mod 5^4)
		

Crossrefs

Programs

  • Mathematica
    nterms=25;Join[{1},Table[Sum[n/(n+2k)Binomial[n+2k,k],{k,0,3n}],{n,nterms-1}]] (* Paolo Xausa, Apr 10 2022 *)

Formula

a(n) ~ 7^(7*n + 3/2) / (37 * sqrt(Pi*n) * 2^(8*n + 3/2) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Mar 15 2022