cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352296 Smallest number that can be expressed as the sum of two primes in exactly n ways or -1 if no such number exists.

Original entry on oeis.org

1, 4, 10, 22, 34, 48, 60, 78, 84, 90, 114, 144, 120, 168, 180, 234, 246, 288, 240, 210, 324, 300, 360, 474, 330, 528, 576, 390, 462, 480, 420, 570, 510, 672, 792, 756, 876, 714, 798, 690, 1038, 630, 1008, 930, 780, 960, 870, 924, 900, 1134, 1434, 840, 990, 1302
Offset: 0

Views

Author

Chai Wah Wu, Mar 11 2022

Keywords

Comments

Conjecture: a(n) != -1 for all n.
If n > 0 and a(n) != -1, then a(n) is even.
a(0) = A014092(1)
a(1) = A067187(1)
a(2) = A067188(1)
a(3) = A067189(1)
a(4) = A067190(1)
a(5) = A067191(1)
a(6) = A066722(1)
a(7) = A352229(1)
a(8) = A352230(1)
a(9) = A352231(1)
a(10) = A352233(1)

Crossrefs

Programs

  • Mathematica
    f[n_] := Count[IntegerPartitions[n, {2}], ?(And @@ PrimeQ[#] &)]; seq[max] :=  Module[{s = Table[0, {max}], n = 1, c = 0, k}, While[c < max, k = f[n]; If[k < max && s[[k + 1]] == 0, c++; s[[k + 1]] = n]; n++]; s]; seq[50] (* Amiram Eldar, Mar 11 2022 *)
  • Python
    from itertools import count
    from sympy import nextprime
    def A352296(n):
        if n == 0:
            return 1
        pset, plist, pmax = {2}, [2], 4
        for m in count(2):
            if m > pmax:
                plist.append(nextprime(plist[-1]))
                pset.add(plist[-1])
                pmax = plist[-1]+2
            c = 0
            for p in plist:
                if 2*p > m:
                    break
                if m - p in pset:
                    c += 1
            if c == n:
                return m