A352303
Expansion of e.g.f. 1/(exp(x) - x^3).
Original entry on oeis.org
1, -1, 1, 5, -47, 239, -239, -11761, 170689, -1237825, -2360159, 238756319, -4146035519, 32586126143, 359988680689, -18567245926321, 351652342984321, -2283764958280321, -89760640709677247, 3866819337993369023, -74731210747948586879, 167887841949213912959
Offset: 0
-
m = 21; Range[0, m]! * CoefficientList[Series[1/(Exp[x] - x^3), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(exp(x)-x^3)))
-
b(n, m) = if(n==0, 1, sum(k=1, n, (-1+(k==m)*m!)*binomial(n, k)*b(n-k, m)));
a(n) = b(n, 3);
A352304
Expansion of e.g.f. 1/(exp(x) - x^4).
Original entry on oeis.org
1, -1, 1, -1, 25, -241, 1441, -6721, 67201, -1185409, 16652161, -180639361, 2098673281, -37526586241, 785718950017, -14516030954881, 247504017895681, -4832929862019841, 116556246644716801, -2930255897793414913, 69746855593499124481, -1673960044278244020481
Offset: 0
-
m = 21; Range[0, m]! * CoefficientList[Series[1/(Exp[x] - x^4), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(exp(x)-x^4)))
-
b(n, m) = if(n==0, 1, sum(k=1, n, (-1+(k==m)*m!)*binomial(n, k)*b(n-k, m)));
a(n) = b(n, 4);
A352309
Expansion of e.g.f. 1/(exp(x) - x^2/2).
Original entry on oeis.org
1, -1, 2, -7, 31, -171, 1141, -8863, 78653, -785557, 8716861, -106395741, 1416724915, -20436548575, 317477947151, -5284248213091, 93816998697721, -1769737117839849, 35347571931577609, -745232024035027225, 16538641134235561631, -385387334950748244451
Offset: 0
-
m = 21; Range[0, m]! * CoefficientList[Series[1/(Exp[x] - x^2/2), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(exp(x)-x^2/2)))
-
b(n, m) = if(n==0, 1, sum(k=1, n, (-1+(k==m))*binomial(n, k)*b(n-k, m)));
a(n) = b(n, 2);
Showing 1-3 of 3 results.