A352329 Squares in A030299.
1, 13527684, 34857216, 65318724, 73256481, 81432576, 139854276, 152843769, 157326849, 215384976, 245893761, 254817369, 326597184, 361874529, 375468129, 382945761, 385297641, 412739856, 523814769, 529874361, 537219684, 549386721, 587432169, 589324176, 597362481, 615387249
Offset: 1
References
- John D. Dixon and Brian Mortimer, Permutation groups. Graduate Texts in Mathematics, 163. Springer-Verlag, New York, 1996. xii+346 pp. ISBN: 0-387-94599-7 MR1409812 (98m:20003).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..3185
Programs
-
Python
from itertools import permutations def pmap(s, m): return sum(s[i-1]*10**(m-i) for i in range(1, len(s)+1)) def agen(): m = 1 while True: for s in permutations(range(1, m+1)): yield pmap(s, m) m += 1 def aupton(terms): alst, g = [], agen() while len(alst) < terms: alst += [next(g)] return alst def is_perfect_square(n): return round(n ** 0.5) ** 2 == n print([x for x in aupton(5000000) if is_perfect_square(x)])
-
Python
from itertools import count, islice, permutations from sympy import integer_nthroot def A352329_gen(): # generator of terms for l in count(1): if (r := l*(l+1)//2 % 9) == 0 or r == 1 or r == 4 or r == 7: m = tuple(10**(l-i-1) for i in range(l)) for p in permutations(range(1,l+1)): if integer_nthroot(n := sum(prod(k) for k in zip(m,p)),2)[1]: yield n A352329_list = list(islice(A352329_gen(),10)) # Chai Wah Wu, Mar 21-22 2022
Comments