cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352329 Squares in A030299.

Original entry on oeis.org

1, 13527684, 34857216, 65318724, 73256481, 81432576, 139854276, 152843769, 157326849, 215384976, 245893761, 254817369, 326597184, 361874529, 375468129, 382945761, 385297641, 412739856, 523814769, 529874361, 537219684, 549386721, 587432169, 589324176, 597362481, 615387249
Offset: 1

Views

Author

Luca Onnis and Marco RipĂ , Mar 12 2022

Keywords

Comments

Conjecture: there are infinitely many terms.

References

  • John D. Dixon and Brian Mortimer, Permutation groups. Graduate Texts in Mathematics, 163. Springer-Verlag, New York, 1996. xii+346 pp. ISBN: 0-387-94599-7 MR1409812 (98m:20003).

Crossrefs

Programs

  • Python
    from itertools import permutations
    def pmap(s, m): return sum(s[i-1]*10**(m-i) for i in range(1, len(s)+1))
    def agen():
      m = 1
      while True:
        for s in permutations(range(1, m+1)): yield pmap(s, m)
        m += 1
    def aupton(terms):
      alst, g = [], agen()
      while len(alst) < terms: alst += [next(g)]
      return alst
    def is_perfect_square(n):
            return round(n ** 0.5) ** 2 == n
    print([x for x in aupton(5000000) if is_perfect_square(x)])
    
  • Python
    from itertools import count, islice, permutations
    from sympy import integer_nthroot
    def A352329_gen(): # generator of terms
        for l in count(1):
            if (r := l*(l+1)//2 % 9) == 0 or r == 1 or r == 4 or r == 7:
                m = tuple(10**(l-i-1) for i in range(l))
                for p in permutations(range(1,l+1)):
                    if integer_nthroot(n := sum(prod(k) for k in zip(m,p)),2)[1]:
                        yield n
    A352329_list = list(islice(A352329_gen(),10)) # Chai Wah Wu, Mar 21-22 2022