A352331 Numbers k for which phi(k) = phi(k''), where phi is the Euler totient function (A000010) and k'' the second arithmetic derivative of k (A068346).
4, 27, 104, 260, 296, 405, 525, 740, 910, 945, 1460, 1806, 1818, 2504, 3125, 3140, 3176, 3656, 3860, 4563, 5540, 6056, 6930, 7016, 8420, 8636, 9224, 10820, 12573, 13256, 14024, 15140, 15464, 15944, 16136, 19940, 20456, 21690, 21860, 22856, 23336, 24020, 24260
Offset: 1
Keywords
Examples
phi(4'') = phi(4) because 4'' = 4, so 4 is a term. phi (27'') = phi(27) because 27'' = 27, so 27 is a term. phi(104'') = phi(164') = phi(168) = phi (8*3*7) = 4*2*6 = 48 and phi(104) = phi(8*13) = 4*12 = 48, so 104 is a term.
Programs
-
Magma
f:=func
; [n:n in [2..24300]| not IsPrime(n) and EulerPhi(n) eq EulerPhi(Floor(f(Floor(f(n))))) ]; -
Mathematica
d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[25000], EulerPhi[#] == EulerPhi[d[d[#]]] &] (* Amiram Eldar, Apr 10 2022 *)
Comments