A352336 Define a sequence B = {b(i): i >= 1} by b(i) = smallest unused number when A109812(i) is being calculated, and then remove duplicates from B.
1, 2, 3, 5, 6, 7, 11, 13, 15, 22, 23, 27, 28, 29, 30, 31, 43, 46, 47, 55, 61, 63, 87, 91, 93, 94, 95, 123, 125, 126, 127, 189, 191, 222, 223, 235, 237, 238, 239, 247, 251, 254, 255, 319, 373, 375, 379, 381, 383, 431, 439, 443, 446, 447, 475, 479, 495, 499, 503, 506, 507, 509, 511, 765, 767, 895, 959, 989, 991, 1007, 1023, 1503, 1519, 1531, 1535, 1783
Offset: 1
Examples
The initial terms of A109812 and the smallest missing numbers (smn): n a(n) smn 1 1 2 2 2 3 3 4 3 4 3 5 5 8 5 6 5 6 7 10 6 8 16 6 9 6 7 10 9 7 11 18 7 12 12 7 ... so the distinct smallest missing numbers are 1, 2, 3, 5, 6, 7, ...
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..221
- David Broadhurst, Table of n, A352336(n), A352359(n) for n = 1..221
Programs
-
Mathematica
c[_] = 0; a[1] = c[1] = 1; u = 2; {1}~Join~Reap[Do[k = u; While[Nand[c[k] == 0, BitAnd[a[i - 1], k] == 0], k++]; If[a[i - 1] == u, Sow[u]; While[c[u] > 0, u++]]; Set[{a[i], c[k]}, {k, i}], {i, 2, nn}]][[-1, -1]]
Extensions
Edited by N. J. A. Sloane, Apr 26 2022 and May 03 2024
Comments