A352347 Least odd prime p such that q divides 2^p - p^2, where q is n-th prime of the form 8*k +- 1, or -1 if no such prime exists.
5, 31, 29, 89, 11, 11, 13, 89, 7, 283, 29, 211, 13, 643, 2711, 491, 1627, 1699, 283, 727, 1493, 1663, 37, 89, 907, 1039, 73, 571, 2707, 149, 179, 197, 443, 463, 1187, 4133, 383, 359, 251, 1567, 4603, 3469, 2069, 313, 677, 1319, 2441, 647, 3733, 3623, 31, 1447
Offset: 1
Keywords
Examples
a(1) = 5 since A001132(1) | 2^5 - 5^2 = 32 - 25 = 7.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000
- Robert G. Wilson v, Table of n, a(n) for n = 1..100000
Programs
-
PARI
f(q) = forprime(p=5, oo, if(Mod(2, q)^p == Mod(p, q)^2, return(p))); lista(nn) = forprime(q=7, nn, if((q+2)%8<4, print1(f(q), ", "))); \\ Jinyuan Wang, Jul 14 2022
Extensions
Name edited by Jinyuan Wang, Jul 14 2022
Comments