A352354 Primes "s" corresponding to the even numbers with exactly 1 pair of Goldbach partitions, (p,q) and (r,s) with p,q,r,s prime and p < r <= s < q, such that all integers in the open intervals (p,r) and (s,q) are composite.
5, 11, 11, 17, 29, 29, 41, 59, 53, 79, 61, 73, 83, 73, 149, 131, 151, 131, 157, 151, 157, 151, 157, 239, 167, 269, 251, 271, 157, 271, 251, 271, 331, 233, 353, 251, 257, 331, 263, 367, 211, 271, 373, 367, 373, 461, 433, 331, 331, 433, 433, 257, 367, 373, 569, 541, 443, 557, 433, 433
Offset: 1
Keywords
Examples
a(9) = 53; A352297(9) = 82 has exactly one pair of Goldbach partitions, namely (23,59) and (29,53), such that all integers in the open intervals (23,29) and (53,59) are composite. The prime corresponding to "s" in the definition is 53.
Links
- Eric Weisstein's World of Mathematics, Goldbach Partition
- Wikipedia, Goldbach's conjecture
- Index entries for sequences related to Goldbach conjecture
- Index entries for sequences related to partitions
Comments