A352361 Array read by ascending antidiagonals. A(n, k) = Fibonacci(k, n), where Fibonacci(n, x) are the Fibonacci polynomials.
0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 2, 2, 0, 0, 1, 3, 5, 3, 1, 0, 1, 4, 10, 12, 5, 0, 0, 1, 5, 17, 33, 29, 8, 1, 0, 1, 6, 26, 72, 109, 70, 13, 0, 0, 1, 7, 37, 135, 305, 360, 169, 21, 1, 0, 1, 8, 50, 228, 701, 1292, 1189, 408, 34, 0, 0, 1, 9, 65, 357, 1405, 3640, 5473, 3927, 985, 55, 1
Offset: 0
Examples
Array, A(n,k), starts: n\k 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... ------------------------------------------------------------------------- [0] 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ... A000035; [1] 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... A000045; [2] 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, ... A000129; [3] 0, 1, 3, 10, 33, 109, 360, 1189, 3927, 12970, ... A006190; [4] 0, 1, 4, 17, 72, 305, 1292, 5473, 23184, 98209, ... A001076; [5] 0, 1, 5, 26, 135, 701, 3640, 18901, 98145, 509626, ... A052918; [6] 0, 1, 6, 37, 228, 1405, 8658, 53353, 328776, 2026009, ... A005668; [7] 0, 1, 7, 50, 357, 2549, 18200, 129949, 927843, 6624850, ... A054413; [8] 0, 1, 8, 65, 528, 4289, 34840, 283009, 2298912, 18674305, ... A041025; [9] 0, 1, 9, 82, 747, 6805, 61992, 564733, 5144589, 46866034, ... A099371; | | | | A054602 | A124152; | | | A002522 A057721; | | A001477; | A000012; A000004; Antidiagonals, T(n, k), begin as: 0; 0, 1; 0, 1, 0; 0, 1, 1, 1; 0, 1, 2, 2, 0; 0, 1, 3, 5, 3, 1; 0, 1, 4, 10, 12, 5, 0; 0, 1, 5, 17, 33, 29, 8, 1; 0, 1, 6, 26, 72, 109, 70, 13, 0; 0, 1, 7, 37, 135, 305, 360, 169, 21, 1;
Links
- G. C. Greubel, Antidiagonals n = 0..50, flattened
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
Crossrefs
Programs
-
Magma
A352361:= func< n, k | k le 1 select k else Evaluate(DicksonSecond(k-1, -1), n-k) >; [A352361(n, k): k in [0..n], n in [0..13]]; // G. C. Greubel, Sep 29 2024
-
Maple
seq(seq(combinat:-fibonacci(k, n - k), k = 0..n), n = 0..11);
-
Mathematica
Table[Fibonacci[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* or *) A[n_, k_] := With[{s = Sqrt[n^2 + 4]}, ((n + s)^k - (n - s)^k) / (2^k*s)]; Table[Simplify[A[n, k]], {n, 0, 9}, {k, 0, 9}] // TableForm
-
PARI
A(n, k) = ([1, k; 1, k-1]^n)[2, 1] ; export(A) for(k = 0, 9, print(parvector(10, n, A(n - 1, k))))
-
SageMath
def A352361(n, k): return lucas_number1(k,n-k,-1) flatten([[A352361(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Sep 29 2024
Formula
A(n, k) = Sum_{j=0..floor((k-1)/2)} binomial(k-j-1, j)*n^(k-2*j-1).
A(n, k) = ((n + s)^k - (n - s)^k) / (2^k*s) where s = sqrt(n^2 + 4).
A(n, k) = [x^k] (x / (1 - n*x - x^2)).
A(n, k) = n^(k-1)*hypergeom([1 - k/2, 1/2 - k/2], [1 - k], -4/n^2) for n,k >= 1.
A(n, n) = T(2*n, n) = A084844(n).
From G. C. Greubel, Sep 29 2024: (Start)
T(n, k) = A(n-k, k) (antidiagonal triangle).
T(2*n+1, n+1) = A084845(n).
Sum_{k=0..n} T(n, k) = A304357(n) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)*A304359(n). (End)
Comments