A352362 Array read by ascending antidiagonals. T(n, k) = L(k, n) where L are the Lucas polynomials.
2, 2, 0, 2, 1, 2, 2, 2, 3, 0, 2, 3, 6, 4, 2, 2, 4, 11, 14, 7, 0, 2, 5, 18, 36, 34, 11, 2, 2, 6, 27, 76, 119, 82, 18, 0, 2, 7, 38, 140, 322, 393, 198, 29, 2, 2, 8, 51, 234, 727, 1364, 1298, 478, 47, 0, 2, 9, 66, 364, 1442, 3775, 5778, 4287, 1154, 76, 2
Offset: 0
Examples
Array starts: n\k 0, 1, 2, 3, 4, 5, 6, 7, 8, ... -------------------------------------------------------------- [0] 2, 0, 2, 0, 2, 0, 2, 0, 2, ... A010673 [1] 2, 1, 3, 4, 7, 11, 18, 29, 47, ... A000032 [2] 2, 2, 6, 14, 34, 82, 198, 478, 1154, ... A002203 [3] 2, 3, 11, 36, 119, 393, 1298, 4287, 14159, ... A006497 [4] 2, 4, 18, 76, 322, 1364, 5778, 24476, 103682, ... A014448 [5] 2, 5, 27, 140, 727, 3775, 19602, 101785, 528527, ... A087130 [6] 2, 6, 38, 234, 1442, 8886, 54758, 337434, 2079362, ... A085447 [7] 2, 7, 51, 364, 2599, 18557, 132498, 946043, 6754799, ... A086902 [8] 2, 8, 66, 536, 4354, 35368, 287298, 2333752, 18957314, ... A086594 [9] 2, 9, 83, 756, 6887, 62739, 571538, 5206581, 47430767, ... A087798 A007395|A059100| A001477 A079908
Links
- Eric Weisstein's World of Mathematics, Lucas Polynomial
Crossrefs
Programs
-
Maple
T := (n, k) -> (n/2 + sqrt((n/2)^2 + 1))^k + (n/2 - sqrt((n/2)^2 + 1))^k: seq(seq(simplify(T(n - k, k)), k = 0..n), n = 0..10);
-
Mathematica
Table[LucasL[k, n], {n, 0, 9}, {k, 0, 9}] // TableForm (* or *) T[ 0, k_] := 2 Mod[k+1, 2]; T[n_, 0] := 2; T[n_, k_] := n^k Hypergeometric2F1[1/2 - k/2, -k/2, 1 - k, -4/n^2]; Table[T[n, k], {n, 0, 9}, {k, 0, 8}] // TableForm
-
PARI
T(n, k) = ([0, 1; 1, k]^n*[2; k])[1, 1] ; export(T) for(k = 0, 9, print(parvector(10, n, T(n - 1, k))))
Formula
T(n, k) = Sum_{j=0..floor(k/2)} binomial(k-j, j)*(k/(k-j))*n^(k-2*j) for k >= 1.
T(n, k) = (n/2 + sqrt((n/2)^2 + 1))^k + (n/2 - sqrt((n/2)^2 + 1))^k.
T(n, k) = [x^k] ((2 - n*x)/(1 - n*x - x^2)).
T(n, k) = n^k*hypergeom([1/2 - k/2, -k/2], [1 - k], -4/n^2) for n,k >= 1.