cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A352365 Alternating row sums of A352363.

Original entry on oeis.org

1, -1, 0, 0, 0, 18, -18, 70, -700, -3850, 574, -56826, 1111572, 3361512, 33911724, 58266780, -2866139848, -16171966382, -313720155122, -333432770154, 6143791050452, 221783648934584, 3761406823258348, 19173257457737964, 157733986443551784, -3667226903663595468
Offset: 0

Views

Author

Peter Luschny, Mar 15 2022

Keywords

Crossrefs

Cf. A352363.

Programs

  • Maple
    SwingNumber := proc(n) option remember;  n! / iquo(n, 2)!^2 end proc:
    f:= n -> add((-1)^k * IncompleteBellB(n,k,seq(SwingNumber(j),j=0..n)),k=0..n):
    map(f, [$0..30]); # Robert Israel, Oct 23 2023

A352364 Row sums of A352363.

Original entry on oeis.org

1, 1, 2, 6, 24, 102, 522, 2954, 18732, 128338, 961954, 7701386, 66224004, 603532776, 5838062076, 59440800540, 637153946792, 7149716758206, 83945137341802, 1027214990885490, 13089318802216052, 173190191614971256, 2377205362853637580, 33775960984392259580
Offset: 0

Views

Author

Peter Luschny, Mar 15 2022

Keywords

Crossrefs

Cf. A352363.

A352366 Triangle read by rows. The incomplete Bell transform of the Catalan numbers.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 5, 11, 6, 1, 0, 14, 45, 35, 10, 1, 0, 42, 199, 210, 85, 15, 1, 0, 132, 938, 1309, 700, 175, 21, 1, 0, 429, 4675, 8498, 5789, 1890, 322, 28, 1, 0, 1430, 24489, 57455, 48762, 19929, 4410, 546, 36, 1
Offset: 0

Views

Author

Peter Luschny, Mar 15 2022

Keywords

Examples

			Triangle start:
[0] 1;
[1] 0,    1;
[2] 0,    1,     1;
[3] 0,    2,     3,     1;
[4] 0,    5,    11,     6,     1;
[5] 0,   14,    45,    35,    10,     1;
[6] 0,   42,   199,   210,    85,    15,    1;
[7] 0,  132,   938,  1309,   700,   175,   21,   1;
[8] 0,  429,  4675,  8498,  5789,  1890,  322,  28,  1;
[9] 0, 1430, 24489, 57455, 48762, 19929, 4410, 546, 36, 1;
		

Crossrefs

Cf. A000108, A352367 (row sums), A352368 (alternating row sums).

Programs

  • Maple
    CatalanNumber := n -> binomial(2*n, n)/(n + 1):
    for n from 0 to 9 do
    seq(IncompleteBellB(n, k, seq(CatalanNumber(j), j=0 .. n)), k = 0..n) od;

Formula

Given a sequence s let s|n denote the initial segment s(0), s(1), ..., s(n).
(T(s))(n, k) = IncompleteBellPolynomial(n, k, s|n) where s(n) = CatalanNumber(n).

A352369 Triangle read by rows. The incomplete Bell transform of the central binomial numbers.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 20, 36, 12, 1, 0, 70, 220, 120, 20, 1, 0, 252, 1380, 1140, 300, 30, 1, 0, 924, 8904, 10710, 4060, 630, 42, 1, 0, 3432, 59024, 101136, 52640, 11480, 1176, 56, 1, 0, 12870, 400824, 966672, 671328, 195300, 27720, 2016, 72, 1
Offset: 0

Views

Author

Peter Luschny, Mar 15 2022

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 0,     1;
[2] 0,     2,      1;
[3] 0,     6,      6,      1;
[4] 0,    20,     36,     12,      1;
[5] 0,    70,    220,    120,     20,      1;
[6] 0,   252,   1380,   1140,    300,     30,     1;
[7] 0,   924,   8904,  10710,   4060,    630,    42,    1;
[8] 0,  3432,  59024, 101136,  52640,  11480,  1176,   56,  1;
[9] 0, 12870, 400824, 966672, 671328, 195300, 27720, 2016, 72, 1;
		

Crossrefs

Cf. A000984, A352370 (row sums), A352371 (alternating row sums).

Programs

  • Maple
    CentralBinomial := n -> binomial(2*n, n):
    for n from 0 to 9 do
    seq(IncompleteBellB(n, k, seq(CentralBinomial(j), j = 0..n)), k = 0..n) od;

Formula

Given a sequence s let s|n denote the initial segment s(0), s(1), ..., s(n).
(T(s))(n, k) = IncompleteBellPolynomial(n, k, s|n) where s(n) = binomial(2*n, n).
Showing 1-4 of 4 results.