cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A352370 Row sums of A352369.

Original entry on oeis.org

1, 1, 3, 13, 69, 431, 3103, 25271, 228945, 2276803, 24605811, 286742831, 3580459501, 47647919385, 672666093583, 10033841676961, 157592244804465, 2598219867015235, 44845197606105859, 808362808229409743, 15184641619260934701, 296660002497701895445, 6017229226892950754271
Offset: 0

Views

Author

Peter Luschny, Mar 15 2022

Keywords

Crossrefs

Cf. A352369.

A352371 Alternating row sums of A352369.

Original entry on oeis.org

1, -1, -1, -1, 5, 49, 259, 741, -3263, -76915, -782089, -5173763, -9197123, 389152919, 8099637883, 102525854939, 853355714673, 931100151549, -140777397537929, -3587404181388531, -58439969237350259, -649453301904349909, -2064509243175655605, 131896195608069986079
Offset: 0

Views

Author

Peter Luschny, Mar 15 2022

Keywords

Crossrefs

Cf. A352369.

A352363 Triangle read by rows. The incomplete Bell transform of the swinging factorials A056040.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 6, 50, 35, 10, 1, 0, 30, 166, 225, 85, 15, 1, 0, 20, 756, 1246, 735, 175, 21, 1, 0, 140, 2932, 7588, 5761, 1960, 322, 28, 1, 0, 70, 11556, 45296, 46116, 20181, 4536, 546, 36, 1
Offset: 0

Views

Author

Peter Luschny, Mar 15 2022

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 0,   1;
[2] 0,   1,     1;
[3] 0,   2,     3,     1;
[4] 0,   6,    11,     6,     1;
[5] 0,   6,    50,    35,    10,     1;
[6] 0,  30,   166,   225,    85,    15,    1;
[7] 0,  20,   756,  1246,   735,   175,   21,   1;
[8] 0, 140,  2932,  7588,  5761,  1960,  322,  28, 1;
[9] 0,  70, 11556, 45296, 46116, 20181, 4536, 546, 36, 1;
		

Crossrefs

Cf. A056040, A352364 (row sums), A352365 (alternating row sums).

Programs

  • Maple
    SwingNumber := n -> n! / iquo(n, 2)!^2:
    for n from 0 to 9 do
    seq(IncompleteBellB(n, k, seq(SwingNumber(j), j = 0..n)), k = 0..n) od;

Formula

Given a sequence s let s|n denote the initial segment s(0), s(1), ..., s(n).
(T(s))(n, k) = IncompleteBellPolynomial(n, k, s|n), where s(n) = n!/floor(n/2)!^2.

A352366 Triangle read by rows. The incomplete Bell transform of the Catalan numbers.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 5, 11, 6, 1, 0, 14, 45, 35, 10, 1, 0, 42, 199, 210, 85, 15, 1, 0, 132, 938, 1309, 700, 175, 21, 1, 0, 429, 4675, 8498, 5789, 1890, 322, 28, 1, 0, 1430, 24489, 57455, 48762, 19929, 4410, 546, 36, 1
Offset: 0

Views

Author

Peter Luschny, Mar 15 2022

Keywords

Examples

			Triangle start:
[0] 1;
[1] 0,    1;
[2] 0,    1,     1;
[3] 0,    2,     3,     1;
[4] 0,    5,    11,     6,     1;
[5] 0,   14,    45,    35,    10,     1;
[6] 0,   42,   199,   210,    85,    15,    1;
[7] 0,  132,   938,  1309,   700,   175,   21,   1;
[8] 0,  429,  4675,  8498,  5789,  1890,  322,  28,  1;
[9] 0, 1430, 24489, 57455, 48762, 19929, 4410, 546, 36, 1;
		

Crossrefs

Cf. A000108, A352367 (row sums), A352368 (alternating row sums).

Programs

  • Maple
    CatalanNumber := n -> binomial(2*n, n)/(n + 1):
    for n from 0 to 9 do
    seq(IncompleteBellB(n, k, seq(CatalanNumber(j), j=0 .. n)), k = 0..n) od;

Formula

Given a sequence s let s|n denote the initial segment s(0), s(1), ..., s(n).
(T(s))(n, k) = IncompleteBellPolynomial(n, k, s|n) where s(n) = CatalanNumber(n).
Showing 1-4 of 4 results.