cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352378 Irregular triangle read by rows: T(n,k) is the (n-th)-to-last digit of 2^p such that p == k + A123384(n-1) (mod A005054(n)); k >= 0.

Original entry on oeis.org

2, 4, 8, 6, 1, 3, 6, 2, 5, 1, 2, 4, 9, 9, 8, 6, 3, 7, 4, 8, 7, 5, 0, 0, 1, 2, 5, 0, 0, 0, 1, 3, 7, 5, 0, 1, 2, 5, 1, 3, 6, 2, 4, 8, 7, 4, 9, 8, 6, 2, 5, 1, 3, 7, 4, 9, 8, 7, 5, 1, 2, 4, 8, 6, 3, 6, 3, 6, 2, 4, 9, 9, 9, 9, 8, 7, 4, 9, 9, 9, 8, 6, 2, 4, 9, 8, 7, 4, 8, 6, 3, 7, 5, 1, 2, 5, 0, 1, 3, 7, 4, 8, 6, 2, 5, 0, 1
Offset: 1

Views

Author

Davis Smith, Mar 14 2022

Keywords

Comments

The n-th row of this triangle is the cycle of the (n-th)-to-last digit of powers of 2.
The period of the last n digits of powers of 2 where the exponent is greater than or equal to n is A005054(n). As a result, this triangle can be used to get the (n-th)-to-last digit of a large power of 2; if p == k + A123384(n-1) (mod A005054(n)), then the (n-th)-to-last digit (base 10) of 2^p is T(n,k). For example, for n = 1, if p == 1 (mod 4), then 2^p == 2 (mod 10) and if p == 3 (mod 4), then 2^p == 8 (mod 10). For n = 2, if p == 4 (mod 20), then the second-to-last digit of 2^p (base 10) is 1 and if p == 7 (mod 20), then the second-to-last digit of 2^p (base 10) is 2.

Examples

			Irregular triangle begins:
n/k| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... | Number of terms:
---+---------------------------------------+-----------------
1  | 2, 4, 8, 6;                           |                4
2  | 1, 3, 6, 2, 5, 1, 2, 4, 9, 9,  8, ... |               20
3  | 1, 2, 5, 0, 0, 0, 1, 3, 7, 5,  0, ... |              100
4  | 1, 2, 4, 8, 6, 2, 5, 1, 2, 4,  8, ... |              500
5  | 1, 3, 6, 3, 6, 2, 4, 9, 9, 8,  7, ... |             2500
6  | 1, 2, 5, 0, 0, 1, 3, 7, 5, 1,  2, ... |            12500
...
		

Crossrefs

The (n-th)-to-last digit of a power of 2: A000689 (n=1), A160590 (n=2).

Programs

  • PARI
    A352378_rows(n)=my(N=logint(10^(n-1),2),k=4*5^(n-1)); vector(k,v,floor(lift(Mod(2,10^n)^(v+N))/(10^(n-1))))

Formula

For n > 1, T(n,0) = 1.