A352424 Numbers that can be written as sums of squares of consecutive primes in two ways.
14720439, 16535628, 34714710, 40741208, 61436388, 603346308, 1172360113, 1368156941, 1574100889, 1924496102, 1989253499, 2021860243, 6774546339, 9770541610, 12230855963, 12311606487, 12540842446, 14513723777, 26423329489, 38648724198, 47638558043, 50195886916, 50811319931, 56449248367
Offset: 1
Keywords
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..991
- Cathal O'Sullivan, Jonathan P. Sorenson, and Aryn Stahl, An Algorithm to Find Sums of Consecutive Powers of Primes, arXiv:2204.10930 [math.NT], 2022-2023. See 4.2 Duplicates p. 8-9.
- Michael S. Branicky, Python Program
Programs
-
Python
# see link for a version suitable for producing b-file from sympy import primerange, integer_nthroot def aupto(limit): adict = dict() rootlimit = integer_nthroot(limit, 2)[0] for x in primerange(2, rootlimit+1): s = x**2 adict[s] = 1 for y in primerange(x+1, rootlimit+1): s += y**2 if s <= limit: if s not in adict: adict[s] = 1 else: adict[s] += 1 else: break return sorted(s for s in adict if adict[s] == 2) print(aupto(6*10**10)) # Michael S. Branicky, Apr 26 2022