A352456 Smallest Matula-Goebel number of a rooted binary tree (everywhere 0 or 2 children) of n childless vertices.
1, 4, 14, 49, 301, 1589, 9761, 51529, 452411, 3041573, 23140153, 143573641, 1260538619, 8474639717, 64474684537
Offset: 1
Examples
For n = 6, the tree a(6) = 1589 is . * root / \ * * 6 childless / \ / \ vertices "@" @ @ * * / \ / \ @ @ @ @ .
References
- Audace A. V. Dossou-Olory. The topological trees with extreme Matula numbers. J. Combin. Math. Combin. Comput., 115 (2020), 215-225.
Links
- Audace Amen Vioutou Dossou-Olory, The topological trees with extremal Matula numbers, arXiv:1806.03995 [math.CO], 2018.
- Kevin Ryde, PARI/GP Code
- Index entries for sequences related to Matula-Goebel numbers
Crossrefs
Programs
-
PARI
\\ See links.
-
Python
from sympy import prime from itertools import count, islice def agen(): # generator of terms alst, plst = [0, 1], [0, 2] yield 1 for n in count(2): an = min(plst[x]*plst[n-x] for x in range(1, n//2+1)) yield an alst.append(an) plst.append(prime(an)) print(list(islice(agen(), 10))) # Michael S. Branicky, Mar 17 2022
Formula
a(n) = Min_{x+y=n} prime(a(x))*prime(a(y)).
Extensions
a(14) from Michael S. Branicky, Mar 17 2022
a(15) from Andrew Howroyd, Sep 17 2023
Comments