cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352482 Denominator of (n-d)/n*d where d = A000005(n) is the number of divisors of n.

Original entry on oeis.org

1, 1, 6, 12, 10, 12, 14, 8, 9, 20, 22, 12, 26, 28, 60, 80, 34, 9, 38, 60, 84, 44, 46, 12, 75, 52, 108, 84, 58, 120, 62, 96, 132, 68, 140, 12, 74, 76, 156, 10, 82, 168, 86, 132, 90, 92, 94, 240, 147, 75, 204, 156, 106, 216, 220, 28, 228, 116, 118, 15, 122, 124, 126, 448, 260, 264, 134
Offset: 1

Views

Author

Michel Marcus, Mar 18 2022

Keywords

Comments

The terms are of course the denominators of the fraction "in smallest terms", otherwise said: a(n) = n*d/gcd(n*d, n - d), which is unambiguous also for n = 1 and n = 2 where n - d = 0.

Examples

			The number n = 1 has d = 1 divisors, so (n-d)/(n*d) = 0/1 has denominator a(1) = 1.
The number n = 2 has d = 2 divisors, so (n-d)/(n*d) = 0/4 = 0/1 has denominator a(2) =  1 when written in smallest terms.
The number n = 3 has d = 2 divisors, so (n-d)/(n*d) = 1/6 has denominator a(3) =  6.
The number n = 4 has d = 3 divisors, so (n-d)/(n*d) = 1/12 has denominator a(4) = 12.
The number n = 6 has d = 4 divisors, so (n-d)/(n*d) = 2/24 = 1/12 has denominator a(6) = 12.
		

Crossrefs

Cf. A000005, A049820, A146566, A352483 (numerator).

Programs

  • Mathematica
    a[n_] := Numerator[n*(d = DivisorSigma[0, n])/(n - d)]; Array[a, 100, 3] (* Amiram Eldar, Mar 18 2022 *)
  • PARI
    A352482(n,d=numdiv(n))=denominator((n-d)/(n*d))

Extensions

Edited and extended to offset 1 by M. F. Hasler, Apr 17 2022