A352488 Weak nonexcedance set of A122111. Numbers k >= A122111(k), where A122111 represents partition conjugation using Heinz numbers.
1, 2, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 30, 32, 36, 40, 48, 50, 54, 56, 60, 64, 72, 75, 80, 81, 84, 90, 96, 100, 108, 112, 120, 125, 128, 135, 140, 144, 150, 160, 162, 168, 176, 180, 192, 196, 200, 210, 216, 224, 225, 240, 243, 250, 252, 256, 264, 270, 280
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: () 2: (1) 4: (1,1) 6: (2,1) 8: (1,1,1) 9: (2,2) 12: (2,1,1) 16: (1,1,1,1) 18: (2,2,1) 20: (3,1,1) 24: (2,1,1,1) 27: (2,2,2) 30: (3,2,1) 32: (1,1,1,1,1) 36: (2,2,1,1) 40: (3,1,1,1) 48: (2,1,1,1,1) 50: (3,3,1) 54: (2,2,2,1) 56: (4,1,1,1)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2000
- Richard Ehrenborg and Einar Steingrímsson, The Excedance Set of a Permutation, Advances in Applied Mathematics 24, (2000), 284-299.
- MathOverflow, Why 'excedances' of permutations? [closed].
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Select[Range[100],#>=Times@@Prime/@conj[primeMS[#]]&]
Formula
a(n) >= A122111(a(n)).
Comments