A352518 Numbers > 1 that are not a prime power and whose prime indices and exponents are all themselves prime numbers.
225, 675, 1089, 1125, 2601, 3025, 3267, 3375, 6075, 7225, 7803, 8649, 11979, 15125, 15129, 24025, 25947, 27225, 28125, 29403, 30375, 31329, 33275, 34969, 35937, 36125, 40401, 42025, 44217, 45387, 54675, 62001, 65025, 70227, 81675, 84375, 87025, 93987
Offset: 1
Keywords
Examples
The terms together with their prime indices (not factors) begin: 225: {2,2,3,3} 675: {2,2,2,3,3} 1089: {2,2,5,5} 1125: {2,2,3,3,3} 2601: {2,2,7,7} 3025: {3,3,5,5} 3267: {2,2,2,5,5} 3375: {2,2,2,3,3,3} 6075: {2,2,2,2,2,3,3} 7225: {3,3,7,7} 7803: {2,2,2,7,7} 8649: {2,2,11,11} 11979: {2,2,5,5,5} 15125: {3,3,3,5,5} 15129: {2,2,13,13} 24025: {3,3,11,11} 25947: {2,2,2,11,11} 27225: {2,2,3,3,5,5} 28125: {2,2,3,3,3,3,3} For example, 7803 = prime(1)^3 prime(4)^2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range[10000],!PrimePowerQ[#]&& And@@PrimeQ/@PrimePi/@First/@FactorInteger[#]&& And@@PrimeQ/@Last/@FactorInteger[#]&]
Formula
Sum_{n>=1} 1/a(n) = (Product_{p prime-indexed prime} (1 + Sum_{q prime} 1/p^q)) - (Sum_{p prime-indexed prime} Sum_{q prime} 1/p^q) - 1 = 0.0106862606... . - Amiram Eldar, Aug 04 2024
Comments