A352620 Irregular triangle read by rows which are rows of successive n X n matrices M(n) with entries M(n)[i,j] = i*j mod n+1.
1, 1, 2, 2, 1, 1, 2, 3, 2, 0, 2, 3, 2, 1, 1, 2, 3, 4, 2, 4, 1, 3, 3, 1, 4, 2, 4, 3, 2, 1, 1, 2, 3, 4, 5, 2, 4, 0, 2, 4, 3, 0, 3, 0, 3, 4, 2, 0, 4, 2, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 2, 4, 6, 1, 3, 5, 3, 6, 2, 5, 1, 4, 4, 1, 5, 2, 6, 3, 5, 3, 1, 6, 4, 2, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5
Offset: 1
Examples
Matrices begin: n=1: 1, n=2: 1, 2, 2, 1, n=3: 1, 2, 3, 2, 0, 2, 3, 2, 1, n=4: 1, 2, 3, 4, 2, 4, 1, 3, 3, 1, 4, 2, 4, 3, 2, 1; For example, the 6 X 6 matrix generated by Z_7 is the following: 1 2 3 4 5 6 2 4 6 1 3 5 3 6 2 5 1 4 4 1 5 2 6 3 5 3 1 6 4 2 6 5 4 3 2 1 The trace of this matrix is 14 = A048153(7).
Links
- Onno Cain, Gaussian Integers, Rings, Finite Fields, and the Magic Square of Squares, arXiv:1908.03236 [math.RA], 2019.
- Matt Parker and Brady Haran, Finite Fields & Return of The Parker Square, Numberphile video (Oct 7, 2021).
Crossrefs
Programs
-
Mathematica
Flatten[Table[Table[Mod[k*Table[i, {i, 1, p - 1}], p], {k, 1, p - 1}], {p, 1, 10}]]
Comments