A352656 The number of lozenge tilings of a semiregular hexagon of side lengths n, n, 2*n, n, n and 2*n; equivalently, the number of plane partitions whose solid Young diagram fits inside an n X n X 2*n box.
1, 3, 105, 41580, 184225041, 9095857138368, 4995284546047230864, 30483011847732623089267500, 2065715788914012182693991725390625, 1553908887541345830681718185939775035000000, 12971921694089364427957671958722080861704163596800000
Offset: 0
Examples
Examples of supercongruences: p = 5, n = 1, r = 1: a(5) - a(1)^5 = 9095857138368 - 3^5 = (3^2)*(5^4)*109*367*40423 == 0 (mod 5^4) p = 7, n = 1, r = 1: a(7) - a(1)^7 = 30483011847732623089267500 - 3^7 = (3^2)*(7^4)*1716943* 3007843*273156893 = 0 (mod 7^4) p = 3, n = 1, r = 2: a(3^2) - a(3)^3 = 1553908887541345830681718185939775035000000 - 41580^3 = (2^10)*(3^17)*(5^3)*7*43*78233*3992066532482127207049 == 0 (mod 3^17) exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + 3*x + 57*x^2 + 14022*x^3 + 46099458*x^4 + 1819310390847*x^5 + 832552884579020616*x^6 + 4354718475994129490705199*x^7 + 258214486678446939353495542546848*x^8 + 172656543834793205815736306409587678877597*x^9 + 1297192169926906086694501903974161495745648027761154*x^10 + ....
Links
- C. Krattenthaler, Advanced Determinant Calculus: A Complement, Linear Algebra Appl. 411 (2005), 68-166; arXiv:math/0503507v2 [math.CO], 2005.
- P. A. MacMahon, Combinatory Analysis, vol. 2, Cambridge University Press, 1916; reprinted by Chelsea, New York, 1960.
- Eric Weisstein's World of Mathematics, Barnes G-function
- Eric Weisstein's World of Mathematics, Plane Partition
- Wikipedia, Superfactorial
Programs
-
Maple
S := proc(n) local i; mul(i!, i = 0..n-1) end proc: a := n -> S(4*n)*S(n)^2/S(3*n)^2; seq(a(n), n = 0..10);
-
Mathematica
Table[BarnesG[4*n + 1]*BarnesG[n + 1]^2/BarnesG[3*n + 1]^2, {n, 0, 10}] (* Vaclav Kotesovec, May 16 2022 *)
Formula
a(n) = S(4*n)*S(n)^2/S(3*n)^2, where S(n) = Product_{k = 0..n-1} k! with S(0) = 1.
a(n) = G(4*n+1)*G(n+1)^2/G(3*n+1)^2, where G(n) is Barnes G-function.
a(n) = Product_{i = 1..2*n} (2*n+i-1)!*(i-1)!/(n+i-1)!^2.
a(n) = Product_{i = 1..n} (3*n+i-1)!*(i-1)!/((2*n+i-1)!*(n+i-1)!).
a(n) = Product_{i = 1..2*n} Product_{1 <= j, k <= n} (i + j + k - 1)/(i + j + k - 2).
a(n) = Product_{i = 1..n} Product_{j = 1..n} (2*n + i + j - 1)/(i + j - 1).
a(n) = Product_{i = 1..2*n} Product_{j = 1..n} (n + i + j - 1)/(i + j - 1).
a(n) = A342972(2*n,n).
For n >= 1, a(n) = det( (binomial(3*n,n+i-j)) ) for 1 <= i, j <= n. Apply Krattenhaller, Theorem 4 with a = n, b = 2*n and c = n.
a(n+1) = n!^2*(4*n)!*(4*n+1)!*(4*n+2)!*(4*n+3)!/((3*n)!*(3*n+1)!*(3*n+2)!)^2 * a(n) with a(0) = 1.
a(n) ~ 1/A*(9/(4*n))^(1/12)*exp(B*n^2 + 1/12), where A = 1.2824271291... is the Glaisher-Kinkelin constant A074962 and B = 16*log(2) - 9*log(3).
Conjecture 2: the Gauss congruences a(n*p^r) == a(n*p^(r-1)) (mod p^r) hold for all primes p and positive integers n and r. If true, then the expansion of exp(Sum_{n >= 1} a(n)*x^n/n) has integer coefficients.
Conjecture 3: the supercongruences a(n*p^r) == a(n*p^(r-1))^p (mod p^(4*r)) hold for all primes p and positive integers n and r.
From Peter Bala, Feb 14 2023: (Start)
a(n) = Product_{i = 1..2*n} Product_{j = n..2*n-1} (i+j) / Product_{j = 0..n-1} (i+j).
a(n) = Product_{i = 1..n} Product_{j = 2*n..3*n-1} (i+j) / Product_{j = 0..n-1} (i+j). (End)
Comments