cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352666 Maximum number of induced copies of the claw graph K_{1,3} in an n-node graph.

Original entry on oeis.org

0, 0, 0, 1, 4, 10, 20, 40, 70, 112, 176, 261, 372, 520, 704, 935, 1220, 1560, 1976, 2464, 3038, 3710, 4480, 5376, 6392, 7548, 8856, 10320, 11970, 13800, 15840, 18095, 20580, 23320, 26312, 29601, 33176, 37072, 41300, 45875, 50830, 56160, 61920, 68096, 74732
Offset: 1

Views

Author

Pontus von Brömssen, Mar 26 2022

Keywords

Comments

The sequence (a(n)/binomial(n,4)) is decreasing for n >= 4 and converges to 1/2, the inducibility of the claw graph.
Brown and Sidorenko (1994) prove that a bipartite optimal graph (i.e., an n-node graph with a(n) induced claw graphs) exists for all n. For n >= 2, the size k of the smallest part of an optimal bipartite graph K_{k,n-k} is one of the two integers closest to n/2 - sqrt(3*n/4-1), and a(n) = binomial(k,3)*(n-k) + binomial(n-k,3)*k. Both are optimal if and only if n is in A271713. For 7 <= n <= 10 (and, trivially, n = 3), the tripartite graph K_{1,1,n-2} is also optimal.

Crossrefs

Cf. A271713.
Maximum number of induced copies of other graphs: A028723 (4-node cycle), A111384 (3-node path), A352665 (4-node path), A352667 (paw graph), A352668 (diamond graph), A352669 (cycles).

Programs

  • Python
    from math import comb,isqrt
    def A352666(n):
        if n <= 1: return 0
        r = isqrt(3*n-4)
        k0 = (n-r-1)//2
        return max(comb(k,3)*(n-k)+comb(n-k,3)*k for k in (k0,k0+1))