cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A352704 G.f. A(x) satisfies: (1 - x*A(x))^5 = 1 - 5*x - x^5*A(x^5).

Original entry on oeis.org

1, 2, 6, 21, 80, 320, 1326, 5637, 24434, 107542, 479196, 2157045, 9792702, 44780606, 206055346, 953305632, 4431463863, 20686696920, 96931500840, 455722378776, 2149086843549, 10162544469252, 48176923330632, 228913129263389, 1089973058779915, 5199987220813564
Offset: 0

Views

Author

Paul D. Hanna, Mar 29 2022

Keywords

Comments

Essentially an unsigned version of A352703 (after dropping the initial term).

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 21*x^3 + 80*x^4 + 320*x^5 + 1326*x^6 + 5637*x^7 + 24434*x^8 + 107542*x^9 + 479196*x^10 + ...
where
(1 - x*A(x))^5 = 1 - 5*x - x^5 - 2*x^10 - 6*x^15 - 21*x^20 - 80*x^25 - 320*x^30 - 1326*x^35 - 5637*x^40 - 24434*x^45 - 107542*x^50 + ...
also
(1 - 5*x - x^5*A(x^5))^(1/5) = 1 - x - 2*x^2 - 6*x^3 - 21*x^4 - 80*x^5 - 320*x^6 - 1326*x^7 - 5637*x^8 - 24434*x^9 - 107542*x^10 + ...
which equals 1 - x*A(x).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+2*x); for(i=1,n,
    A = (1 - (1 - 5*x - x^5*subst(A,x,x^5) + x*O(x^(n+1)))^(1/5))/x);
    polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) (1 + x*A(-x))^5 = 1 + 5*x + x^5*A(-x^5).
(2) A(x) = (1 - (1 - 5*x - x^5*A(x^5))^(1/5))/x.
(3) A(x)^5 = A(x^5) (mod 5).

A352706 G.f. A(x) satisfies: (1 - x*A(x))^7 = 1 - 7*x - x^7*A(x^7).

Original entry on oeis.org

1, 3, 13, 65, 351, 1989, 11650, 69900, 427167, 2648438, 16612947, 105215448, 671760933, 4318468134, 27926126553, 181520036178, 1185220461867, 7769787812787, 51117085998498, 337373170647840, 2233091755252871, 14819626692452231, 98582852467595847
Offset: 0

Views

Author

Paul D. Hanna, Mar 29 2022

Keywords

Comments

Essentially an unsigned version of A352705 (after dropping the initial term).

Examples

			G.f.: A(x) = 1 + 3*x + 13*x^2 + 65*x^3 + 351*x^4 + 1989*x^5 + 11650*x^6 + 69900*x^7 + 427167*x^8 + 2648438*x^9 + 16612947*x^10 + ...
where
(1 - x*A(x))^7 = 1 - 7*x - x^7 - 3*x^14 - 13*x^21 - 65*x^28 - 351*x^35 - 1989*x^42 - 11650*x^49 - 69900*x^56 - 427167*x^63 - 2648438*x^70 + ...
also
(1 - 7*x - x^7*A(x^7))^(1/7) = 1 - x - 3*x^2 - 13*x^3 - 65*x^4 - 351*x^5 - 1989*x^6 - 11650*x^7 - 69900*x^8 - 427167*x^9 - 2648438*x^10 + ...
which equals 1 - x*A(x).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+3*x); for(i=1,n,
    A = (1 - (1 - 7*x - x^7*subst(A,x,x^7) + x*O(x^(n+1)))^(1/7))/x);
    polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) (1 + x*A(-x))^7 = 1 + 7*x + x^7*A(-x^7).
(2) A(x) = (1 - (1 - 7*x - x^7*A(x^7))^(1/7))/x.
(3) A(x)^7 = A(x^7) (mod 7).

A376224 G.f. A(x) satisfies A( (x + 3*A(x)^2)^3 ) = A(x)^3.

Original entry on oeis.org

1, 3, 18, 136, 1152, 10458, 99473, 978480, 9872181, 101598389, 1062382809, 11255336235, 120555453344, 1303305334704, 14202627395202, 155847144409224, 1720542786453765, 19096869133735155, 212977164179543266, 2385405242723601582, 26820428322385799784, 302611771988083401990
Offset: 1

Views

Author

Paul D. Hanna, Oct 13 2024

Keywords

Examples

			G.f.: A(x) = x + 3*x^2 + 18*x^3 + 136*x^4 + 1152*x^5 + 10458*x^6 + 99473*x^7 + 978480*x^8 + 9872181*x^9 + 101598389*x^10 + ...
where A( (x + 3*A(x)^2)^3 ) = A(x)^3.
RELATED SERIES.
A(x)^3 = x^3 + 9*x^4 + 81*x^5 + 759*x^6 + 7362*x^7 + 73386*x^8 + 747567*x^9 + 7749720*x^10 + 81500094*x^11 + 867420469*x^12 + ...
( x^2*A(x) )^(1/3) = x + x^2 + 5*x^3 + 35*x^4 + 284*x^5 + 2508*x^6 + 23401*x^7 + 226950*x^8 + 2265015*x^9 + 23110418*x^10 + ...
Let B(x) be the series reversion of g.f. A(x), A(B(x)) = x, then
B(x) = x - 3*x^2 - x^4 - x^7 - 2*x^10 - 4*x^13 - 9*x^16 - 22*x^19 - 55*x^22 - 142*x^25 - 376*x^28 - ... + -A352702(n)*x^(3*n+4) + ...
where B(x) = x*(1 - x*G(x))^3 and B(x) = x - 3*x^2 - x^4*G(x^3), where G(x) is the g.f. of A352702 and begins:
G(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 22*x^5 + 55*x^6 + 142*x^7 + 376*x^8 + 1011*x^9 + 2758*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = x+x^2); for(m=1, n, A = truncate(A) + x^2*O(x^m); A = subst(A, x, (x + 3*A^2)^3 )^(1/3) ); polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = A( (x + 3*A(x)^2)^3 ).
(2) x = A( x*(1 - x*G(x))^3 ), where G(x) is the g.f. of A352702.
(3) x = A( x - 3*x^2 - x^4*G(x^3) ), where G(x) is the g.f. of A352702.
a(n) ~ c * d^n / n^(3/2), where d = 12.108643088449238597222614925208058784697264797459219306522454237465345359... and c = 0.0455800108980650629231383349217685291247499776153219609599892816651... - Vaclav Kotesovec, Oct 14 2024
Showing 1-3 of 3 results.