cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352704 G.f. A(x) satisfies: (1 - x*A(x))^5 = 1 - 5*x - x^5*A(x^5).

Original entry on oeis.org

1, 2, 6, 21, 80, 320, 1326, 5637, 24434, 107542, 479196, 2157045, 9792702, 44780606, 206055346, 953305632, 4431463863, 20686696920, 96931500840, 455722378776, 2149086843549, 10162544469252, 48176923330632, 228913129263389, 1089973058779915, 5199987220813564
Offset: 0

Views

Author

Paul D. Hanna, Mar 29 2022

Keywords

Comments

Essentially an unsigned version of A352703 (after dropping the initial term).

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 21*x^3 + 80*x^4 + 320*x^5 + 1326*x^6 + 5637*x^7 + 24434*x^8 + 107542*x^9 + 479196*x^10 + ...
where
(1 - x*A(x))^5 = 1 - 5*x - x^5 - 2*x^10 - 6*x^15 - 21*x^20 - 80*x^25 - 320*x^30 - 1326*x^35 - 5637*x^40 - 24434*x^45 - 107542*x^50 + ...
also
(1 - 5*x - x^5*A(x^5))^(1/5) = 1 - x - 2*x^2 - 6*x^3 - 21*x^4 - 80*x^5 - 320*x^6 - 1326*x^7 - 5637*x^8 - 24434*x^9 - 107542*x^10 + ...
which equals 1 - x*A(x).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+2*x); for(i=1,n,
    A = (1 - (1 - 5*x - x^5*subst(A,x,x^5) + x*O(x^(n+1)))^(1/5))/x);
    polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) (1 + x*A(-x))^5 = 1 + 5*x + x^5*A(-x^5).
(2) A(x) = (1 - (1 - 5*x - x^5*A(x^5))^(1/5))/x.
(3) A(x)^5 = A(x^5) (mod 5).