A352705 G.f. A(x) satisfies: A(x)^7 = A(x^7) + 7*x.
1, 1, -3, 13, -65, 351, -1989, 11650, -69900, 427167, -2648438, 16612947, -105215448, 671760933, -4318468134, 27926126553, -181520036178, 1185220461867, -7769787812787, 51117085998498, -337373170647840, 2233091755252871, -14819626692452231, 98582852467595847
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x - 3*x^2 + 13*x^3 - 65*x^4 + 351*x^5 - 1989*x^6 + 11650*x^7 - 69900*x^8 + 427167*x^9 - 2648438*x^10 + ... such that A(x)^7 = A(x^7) + 7*x, as illustrated by: A(x)^7 = 1 + 7*x + x^7 - 3*x^14 + 13*x^21 - 65*x^28 + 351*x^35 - 1989*x^42 + 11650*x^49 - 69900*x^56 + 427167*x^63 - 2648438*x^70 + ...
Programs
-
PARI
{a(n) = my(A=1+x); for(i=1,n, A = (subst(A,x,x^7) + 7*x + x*O(x^n))^(1/7)); polcoeff(A,n)} for(n=0,30,print1(a(n),", "))
Comments