A352727 Square array A(n, k), n, k >= 0, read by antidiagonals: the binary expansion of A(n, k) contains the runs of consecutive 1's that appear both in the binary expansions of n and k.
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 2, 0, 0
Offset: 0
Examples
Table A(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ---+------------------------------------------------------ 0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 2| 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 3| 0 0 0 3 0 0 0 0 0 0 0 3 0 0 0 0 4| 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 5| 0 1 0 0 4 5 0 0 0 1 0 0 0 1 0 0 6| 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 7| 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 8| 0 0 0 0 0 0 0 0 8 8 8 8 0 0 0 0 9| 0 1 0 0 0 1 0 0 8 9 8 8 0 1 0 0 10| 0 0 2 0 0 0 0 0 8 8 10 8 0 0 0 0 11| 0 0 0 3 0 0 0 0 8 8 8 11 0 0 0 0 12| 0 0 0 0 0 0 0 0 0 0 0 0 12 12 0 0 13| 0 1 0 0 0 1 0 0 0 1 0 0 12 13 0 0 14| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 15| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10010
- Rémy Sigrist, Colored representation of the table for n, k < 2^10 (where the hue is function of T(n, k); black pixels denote 0's)
- Index entries for sequences related to binary expansion of n
Comments