cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352758 a(n) = (3*(2*n - 1)^2*((2*n - 1)^2 + 2) - 2*n + 3)/2 for n > 0.

Original entry on oeis.org

5, 148, 1011, 3746, 10081, 22320, 43343, 76606, 126141, 196556, 293035, 421338, 587801, 799336, 1063431, 1388150, 1782133, 2254596, 2815331, 3474706, 4243665, 5133728, 6156991, 7326126, 8654381, 10155580, 11844123, 13734986, 15843721, 18186456, 20779895, 23641318, 26788581, 30240116, 34014931, 38132610
Offset: 1

Views

Author

Vladimir Pletser, Apr 02 2022

Keywords

Comments

Numbers D > 0 such that A = B^3 + (B+1)^3 = C^3 - D^3 such that the difference C - D is odd, C - D = 2*n - 1, and the difference of the positive cubes C^3 - D^3 is equal to centered cube numbers, with C > D > B > 0, and A > 0, A = t*(3*t^2 + 4)*(t^2*(3*t^2 + 4)^2 + 3)/4 with t = 2*n-1, and where A = A352755(n), B = A352756(n), C = A352757(n), and D = a(n) (this sequence).
There are infinitely many such numbers a(n) = D in this sequence.
Subsequence of A352136 and of A352223.

Examples

			a(1) = 5 belongs to the sequence as 6^3 - 5^3 = 3^3 + 4^3 = 91 and 6 - 5 = 1 = 2*1 - 1.
a(2) = 148 belongs to the sequence as 151^3 - 148^3 = 46^3 + 47^3 = 201159 and 151 - 148 = 3 = 2*2 - 1.
a(3) = (3*(2*3 - 1)^2*((2*3 - 1)^2 + 2) - 2*3 + 3)/2 = 1011.
a(4) = 3*a(3) - 3*a(2) + a(1) + 576*2 = 3*1011 - 3*148 + 5 + 576*2  = 3746.
		

Crossrefs

Programs

  • Maple
    restart; for n to 20 do (1/2)*(3*(2*n - 1)^2*((2*n - 1)^2 + 2) - 2*n + 3); end do;
  • Python
    def A352758(n): return n*(n*(n*(24*n - 48) + 48) - 25) + 6 # Chai Wah Wu, Jul 11 2022

Formula

A352757(n)^3 - a(n)^3 = A352756(n)^3 + (A352756(n) + 1)^3 = A352755(n) and A352757(n) - a(n) = 2*n - 1.
a(n) = (3*(2*n - 1)^2*((2*n - 1)^2 + 2) - 2*n + 3)/2.
For n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 576*(n - 2), with a(1) = 5, a(2) = 148 and a(3) = 1011.
a(n) can be extended for negative n such that a(-n) = a(n+1) + (2n + 1).
G.f.: x*(5 + 123*x + 321*x^2 + 121*x^3 + 6*x^4)/(1 - x)^5. - Stefano Spezia, Apr 08 2022