cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A353252 Expansion of Sum_{k>=0} x^k * Product_{j=0..k-1} (j + 2 * x).

Original entry on oeis.org

1, 0, 2, 2, 8, 24, 100, 488, 2832, 19096, 147296, 1281392, 12422864, 132870368, 1554525152, 19750621216, 270817685568, 3986140113792, 62686410981696, 1048946532137216, 18608550117641728, 348854564104019072, 6891109834644748032, 143058034748452036352
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[2^k * Abs[StirlingS1[n - k, k]], {k, 0, Floor[n/2]}]; Array[a, 25, 0] (* Amiram Eldar, Apr 09 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, j+2*x)))
    
  • PARI
    a(n) = sum(k=0, n\2, 2^k*abs(stirling(n-k, k, 1)));

Formula

a(n) = Sum_{k=0..floor(n/2)} 2^k * |Stirling1(n-k,k)|.

A353289 a(n) = Sum_{k=0..floor(n/2)} (n-k)^k * |Stirling1(n-k,k)|.

Original entry on oeis.org

1, 0, 1, 2, 10, 51, 323, 2354, 19535, 181606, 1869549, 21110063, 259400501, 3445913273, 49207968328, 751698726580, 12231484211240, 211208935989003, 3857425360784596, 74292198980174828, 1504832580013205275, 31980327844846620785, 711498612995378484414
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, j+k*x)))
    
  • PARI
    a(n) = sum(k=0, n\2, (n-k)^k*abs(stirling(n-k, k, 1)));

Formula

G.f.: Sum_{k>=0} x^k * Product_{j=0..k-1} (j + k * x).
Showing 1-2 of 2 results.