A352812 Lexicographically earliest sequence of distinct nonnegative integers such that for any n and k coprime the binary expansions of a(n) and a(k) have no common 1's.
0, 1, 2, 4, 8, 3, 16, 5, 32, 9, 64, 6, 128, 17, 10, 256, 512, 7, 1024, 12, 18, 65, 2048, 33, 4096, 129, 34, 20, 8192, 11, 16384, 257, 66, 260, 24, 35, 32768, 261, 130, 13, 65536, 19, 131072, 68, 40, 2049, 262144, 36, 524288, 264, 514, 132, 1048576, 37, 72, 21
Offset: 1
Examples
The first terms, alongside their binary expansion, the corresponding k's and the implied forbidden bits, are: n a(n) bin(a(n)) k's bin(forbidden) -- ---- --------- ------------------------------- -------------- 1 0 0 {1} 0 2 1 1 {1} 0 3 2 10 {1, 2} 1 4 4 100 {1, 3} 10 5 8 1000 {1, 2, 3, 4} 111 6 3 11 {1, 5} 1000 7 16 10000 {1, 2, 3, 4, 5, 6} 1111 8 5 101 {1, 3, 5, 7} 11010 9 32 100000 {1, 2, 4, 5, 7, 8} 11101 10 9 1001 {1, 3, 7, 9} 110010 11 64 1000000 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 111111 12 6 110 {1, 5, 7, 11} 1011000
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, Colored logarithmic scatterplot of the first 10000 terms (where the color is function of A052126(n))
- Rémy Sigrist, PARI program
Programs
-
PARI
See Links section.
Comments