A352813 Minimum difference |product(A) - product(B)| where A and B are a partition of {1,2,3,...,2*n} and |A| = |B| = n.
0, 1, 2, 6, 18, 30, 576, 840, 24480, 93696, 800640, 7983360, 65318400, 2286926400, 13680979200, 797369149440, 16753029012720, 10176199188480, 159943859712000, 26453863460044800, 470500040794291200, 20720967220237197312, 61690805562507264000
Offset: 0
Keywords
Examples
For n = 4, the partition A = {1,5,6,7} and B = {2,3,4,8} is optimal, giving difference 1*5*6*7 - 2*3*4*8 = 18. _Rob Pratt_ computed the optimal solutions for n <= 10: [ n] a(n) partitions of 2n ------------------------------------------------------------------ [ 1] 1 2 | 1 [ 2] 2 2,3 | 1,4 [ 3] 6 1,5,6 | 2,3,4 [ 4] 18 1,5,6,7 | 2,3,4,8 [ 5] 30 2,3,4,8,10 | 1,5,6,7,9 [ 6] 576 1,4,7,8,9,11 | 2,3,5,6,10,12 [ 7] 840 2,4,5,6,8,11,14 | 1,3,7,9,10,12,13 [ 8] 24480 1,5,6,7,8,13,14,15 | 2,3,4,9,10,11,12,16 [ 9] 93696 2,3,6,8,9,11,12,13,18 | 1,4,5,7,10,14,15,16,17 [10] 800640 2,3,4,8,9,11,12,18,19,20 | 1,5,6,7,10,13,14,15,16,17
Links
- Max Alekseyev, Table of n, a(n) for n = 0..70
- Gordon Hamilton, Thirsty Fractions, MathPickle, 2013, for elementary and middle school teachers.
- MathOverflow discussion Splitting the integers from 1 to 2n into two sets with products as close as possible.
Programs
-
Python
from math import prod, factorial from itertools import combinations def A352813(n): m = factorial(2*n) return 0 if n == 0 else min(abs((p:=prod(d))-m//p) for d in combinations(range(2,2*n+1),n-1)) # Chai Wah Wu, Apr 06 2022
-
Sage
def A352813(n): return min(abs(prod(A)-prod(B)) for (A,B) in SetPartitions((1..2*n), [n,n])) [A352813(n) for n in (1..10)] # Freddy Barrera, Apr 05 2022
Comments