cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352814 Solution to Forest of Numbers (Bosque de Números) puzzle if we start with the numbers 1 through n for an n X n square grid (see Comments).

Original entry on oeis.org

1, 3, 8, 12, 19, 25, 34
Offset: 1

Views

Author

Rodolfo Kurchan, Apr 04 2022

Keywords

Comments

Start with an n X n square grid. Each cell has neighbors horizontally, vertically and diagonally. Place the numbers 1 to n anywhere. Now place the numbers n+1, n+2, ..., m in order, subject to the rule that when you place k, the sum of its neighbors must equal k. Then a(n) is the maximum m that can be achieved.

Examples

			4 X 4 solution with m = a(4) = 12 from Hector San Segundo:
  +---+---+---+---+
  |   | 10| 3 | 8 |
  +---+---+---+---+
  |   |  6|  1|  4|
  +---+---+---+---+
  |   |  2|   |  5|
  +---+---+---+---+
  | 11|  9|  7| 12|
  +---+---+---+---+
4 = 1 + 3, 5 = 1 + 4, 6 = 1 + 2 + 3, 7 = 2 + 5, 8 = 1 + 3 + 4, 9 = 2 + 7, 10 = 1 + 3 + 6, 11 = 2 + 9, 12 = 5 + 7.
5 X 5 solution with m = a(5) = 19 from _Pontus von Brömssen_:
  +---+---+---+---+---+
  |  5|  6|  7|  8| 18|
  +---+---+---+---+---+
  | 11|   |  1|   | 10|
  +---+---+---+---+---+
  | 14|   | 19|  2| 16|
  +---+---+---+---+---+
  |   |  3|  9|  4|   |
  +---+---+---+---+---+
  | 15| 12|   | 13| 17|
  +---+---+---+---+---+
.
One of 10 6 X 6 solutions (up to rotations and reflections) with m = a(6) = 25 from _Pontus von Brömssen_, Apr 15 2022:
  +---+---+---+---+---+---+
  | 22|  1| 15| 19|   | 20|
  +---+---+---+---+---+---+
  |  7| 14|   |   |  4| 16|
  +---+---+---+---+---+---+
  |   |  6|   | 21|   | 12|
  +---+---+---+---+---+---+
  | 17|   |  9|   |  8| 25|
  +---+---+---+---+---+---+
  |   | 11|   |  3|  5|   |
  +---+---+---+---+---+---+
  | 24| 13|  2| 10| 18| 23|
  +---+---+---+---+---+---+
.
a(7) = 34 from Giorgio Vecchi.
		

Crossrefs

Cf. A350627.

Extensions

a(6) corrected by Pontus von Brömssen, Apr 15 2022