A352825 Number of nonfixed points y(i) != i, where y is the integer partition with Heinz number n.
0, 0, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 4, 2, 2, 2, 3, 1, 2, 1, 4, 1, 2, 2, 3, 1, 2, 1, 4, 1, 2, 1, 3, 2, 2, 1, 5, 2, 3, 1, 3, 1, 3, 2, 4, 1, 2, 1, 3, 1, 2, 2, 5, 2, 2, 1, 3, 1, 3, 1, 4, 1, 2, 3, 3, 2, 2, 1, 5, 3, 2, 1, 3, 2, 2, 1, 4, 1, 3, 2, 3, 1, 2, 2, 6, 1, 3, 2, 4, 1, 2, 1, 4, 3
Offset: 1
Keywords
Examples
The partition (3,2,2,1) has Heinz number 90, so a(90) = 3. The partition (3,3,1,1) has Heinz number 100, so a(100) = 4.
Crossrefs
Programs
-
Mathematica
pnq[y_]:=Length[Select[Range[Length[y]],#!=y[[#]]&]]; Table[pnq[Reverse[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]],{n,100}]
-
PARI
A352825(n) = { my(f=factor(n),i=bigomega(n),c=0); for(k=1,#f~,while(f[k,2], f[k,2]--; c += (i!=primepi(f[k,1])); i--)); (c); }; \\ Antti Karttunen, Apr 14 2022
Extensions
Data section extended up to 105 terms by Antti Karttunen, Apr 14 2022
Comments