A352826 Heinz numbers of integer partitions y without a fixed point y(i) = i. Such a fixed point is unique if it exists.
1, 3, 5, 6, 7, 10, 11, 12, 13, 14, 17, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 65, 67, 68, 70, 71, 73, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 96, 97
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: () 24: (2,1,1,1) 47: (15) 3: (2) 25: (3,3) 48: (2,1,1,1,1) 5: (3) 26: (6,1) 49: (4,4) 6: (2,1) 28: (4,1,1) 50: (3,3,1) 7: (4) 29: (10) 52: (6,1,1) 10: (3,1) 31: (11) 53: (16) 11: (5) 34: (7,1) 55: (5,3) 12: (2,1,1) 35: (4,3) 56: (4,1,1,1) 13: (6) 37: (12) 58: (10,1) 14: (4,1) 38: (8,1) 59: (17) 17: (7) 40: (3,1,1,1) 61: (18) 19: (8) 41: (13) 62: (11,1) 20: (3,1,1) 43: (14) 65: (6,3) 22: (5,1) 44: (5,1,1) 67: (19) 23: (9) 46: (9,1) 68: (7,1,1)
Crossrefs
Programs
-
Mathematica
pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]]; Select[Range[100],pq[Reverse[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]==0&]
Comments