A352827 Heinz numbers of integer partitions y with a fixed point y(i) = i. Such a fixed point is unique if it exists.
2, 4, 8, 9, 15, 16, 18, 21, 27, 30, 32, 33, 36, 39, 42, 45, 51, 54, 57, 60, 63, 64, 66, 69, 72, 78, 81, 84, 87, 90, 93, 99, 102, 108, 111, 114, 117, 120, 123, 125, 126, 128, 129, 132, 135, 138, 141, 144, 153, 156, 159, 162, 168, 171, 174, 175, 177, 180, 183
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 2: (1) 4: (1,1) 8: (1,1,1) 9: (2,2) 15: (3,2) 16: (1,1,1,1) 18: (2,2,1) 21: (4,2) 27: (2,2,2) 30: (3,2,1) 32: (1,1,1,1,1) 33: (5,2) 36: (2,2,1,1) 39: (6,2) 42: (4,2,1) 45: (3,2,2) 51: (7,2) 54: (2,2,2,1) For example, the partition (3,2,2) with Heinz number 45 has a fixed point at position 2, so 45 is in the sequence.
Crossrefs
Programs
-
Mathematica
pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]]; Select[Range[100],pq[Reverse[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]==1&]
Comments