A352831 Numbers whose weakly increasing prime indices y have exactly one fixed point y(i) = i.
2, 4, 8, 9, 10, 12, 14, 16, 22, 24, 26, 27, 28, 32, 34, 36, 38, 40, 44, 46, 48, 52, 58, 60, 62, 63, 64, 68, 70, 72, 74, 75, 76, 80, 81, 82, 86, 88, 92, 94, 96, 98, 99, 104, 106, 108, 110, 112, 116, 117, 118, 120, 122, 124, 125, 128, 130, 132, 134, 135, 136
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 2: {1} 36: {1,1,2,2} 74: {1,12} 4: {1,1} 38: {1,8} 75: {2,3,3} 8: {1,1,1} 40: {1,1,1,3} 76: {1,1,8} 9: {2,2} 44: {1,1,5} 80: {1,1,1,1,3} 10: {1,3} 46: {1,9} 81: {2,2,2,2} 12: {1,1,2} 48: {1,1,1,1,2} 82: {1,13} 14: {1,4} 52: {1,1,6} 86: {1,14} 16: {1,1,1,1} 58: {1,10} 88: {1,1,1,5} 22: {1,5} 60: {1,1,2,3} 92: {1,1,9} 24: {1,1,1,2} 62: {1,11} 94: {1,15} 26: {1,6} 63: {2,2,4} 96: {1,1,1,1,1,2} 27: {2,2,2} 64: {1,1,1,1,1,1} 98: {1,4,4} 28: {1,1,4} 68: {1,1,7} 99: {2,2,5} 32: {1,1,1,1,1} 70: {1,3,4} 104: {1,1,1,6} 34: {1,7} 72: {1,1,1,2,2} 106: {1,16} For example, 63 is in the sequence because its prime indices {2,2,4} have a unique fixed point at the second position.
Crossrefs
Programs
-
Mathematica
pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]]; Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]==1&]
Comments