cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352842 Expansion of e.g.f. exp(Sum_{k>=1} sigma_k(k) * x^k).

Original entry on oeis.org

1, 1, 11, 199, 7585, 427961, 37901851, 4526311231, 729098029409, 149311985624785, 38243144308952971, 11913301283967428951, 4445712423354285230401, 1954806416110914007773769, 1000799932457357582959443035, 589931632494798210345741193231
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^(Sum[DivisorSigma[k, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sigma(k, k)*x^k))))
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*sigma(k, k)*a(n-k)/(n-k)!));

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k * sigma_k(k) * a(n-k)/(n-k)!.
a(n) ~ n! * n^n. - Vaclav Kotesovec, Apr 15 2022