A352852 Primes p such that, if q is the next prime, p^2 + q is a prime times a power of 10.
2, 523, 701, 2213, 2243, 3041, 3701, 4177, 4423, 6451, 7673, 8447, 8513, 9587, 11131, 15233, 15331, 15583, 17519, 19051, 20071, 20333, 22483, 24767, 25951, 26633, 28183, 28771, 28901, 30773, 33461, 33713, 38803, 39419, 39989, 41627, 42131, 43237, 44633, 50321, 50333, 51991, 53551, 54713, 56687
Offset: 1
Keywords
Examples
a(3) = 701 is a term because it is prime, 709 is the next prime, and 701^2 + 709 = 492110 where 49211 is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
R:= NULL: count:= 0: q:= 2: while count < 100 do p:= q; q:= nextprime(p); v:= p^2+q; if v mod 10 = 0 then v:= v/10^min(padic:-ordp(v, 2), padic:-ordp(v, 5)) fi; if isprime(v) then count:= count+1; R:= R, p; fi; od: R;
-
Mathematica
f[n_] := n/10^IntegerExponent[n, 10]; Select[Range[60000], PrimeQ[#] && PrimeQ[f[#^2 + NextPrime[#]]] &] (* Amiram Eldar, Apr 07 2022 *)
Comments