A352872 Numbers whose weakly increasing prime indices y have a fixed point y(i) = i.
2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 2: {1} 28: {1,1,4} 56: {1,1,1,4} 4: {1,1} 30: {1,2,3} 58: {1,10} 6: {1,2} 32: {1,1,1,1,1} 60: {1,1,2,3} 8: {1,1,1} 34: {1,7} 62: {1,11} 9: {2,2} 36: {1,1,2,2} 63: {2,2,4} 10: {1,3} 38: {1,8} 64: {1,1,1,1,1,1} 12: {1,1,2} 40: {1,1,1,3} 66: {1,2,5} 14: {1,4} 42: {1,2,4} 68: {1,1,7} 16: {1,1,1,1} 44: {1,1,5} 70: {1,3,4} 18: {1,2,2} 45: {2,2,3} 72: {1,1,1,2,2} 20: {1,1,3} 46: {1,9} 74: {1,12} 22: {1,5} 48: {1,1,1,1,2} 75: {2,3,3} 24: {1,1,1,2} 50: {1,3,3} 76: {1,1,8} 26: {1,6} 52: {1,1,6} 78: {1,2,6} 27: {2,2,2} 54: {1,2,2,2} 80: {1,1,1,1,3} For example, the multiset {2,3,3} with Heinz number 75 has a fixed point at position 3, so 75 is in the sequence.
Crossrefs
Programs
-
Mathematica
pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]]; Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>0&]
Comments