A352891 Number of iterations of map x -> A341515(x) needed to reach x < n when starting from x=n, or 0 if such number is never reached. Here A341515 is the Collatz or 3x+1 map (A006370) conjugated by unary-binary-encoding (A156552).
0, 0, 1, 6, 1, 3, 1, 11, 1, 3, 1, 9, 1, 7, 1, 11, 1, 3, 1, 6, 1, 6, 1, 9, 1, 11, 1, 7, 1, 1, 1, 91, 1, 106, 1, 5, 1, 16, 1, 14, 1, 4, 1, 7, 1, 20, 1, 89, 1, 3, 1, 7, 1, 3, 1, 87, 1, 21, 1, 1, 1, 50, 1, 92, 1, 5, 1, 18, 1, 3, 1, 8, 1, 98, 1, 14, 1, 5, 1, 14, 1, 34, 1, 6, 1, 35, 1, 12, 1, 2, 1, 21, 1, 71, 1, 90, 1, 3
Offset: 1
Keywords
Links
Crossrefs
Programs
-
PARI
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); }; A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res }; A329603(n) = A005940(2+(3*A156552(n))); A341515(n) = if(n%2, A064989(n), A329603(n)); A352891(n) = if(n<=2, 0, my(k=0,x=n); while(x>=n, x = A341515(x); k++); (k));
Comments