A352896 Maximum value of bigomega (A001222) computed for the terms x after the initial n, when map x -> A352892(x) is iterated starting from x=n down to the first x <= 2, or -1 if such number is never reached. Here A352892 is the next odd term in the Collatz or 3x+1 map (A139391) conjugated by unary-binary-encoding (A156552).
0, 1, 1, 2, 1, 1, 1, 3, 2, 3, 1, 3, 1, 3, 2, 4, 1, 2, 1, 4, 3, 4, 1, 4, 2, 3, 3, 4, 1, 1, 1, 8, 3, 8, 2, 8, 1, 8, 4, 5, 1, 3, 1, 4, 3, 6, 1, 8, 2, 4, 3, 4, 1, 3, 3, 8, 8, 5, 1, 3, 1, 8, 4, 8, 3, 3, 1, 8, 8, 8, 1, 8, 1, 8, 3, 8, 2, 4, 1, 6, 4, 7, 1, 4, 4, 7, 6, 5, 1, 3, 3, 6, 5, 8, 3, 8, 1, 3, 4, 4, 1, 3, 1, 8, 3
Offset: 1
Links
Crossrefs
Programs
-
PARI
A352896(n) = if(n<=2,n-1, my(m=0); while(n>2, n = A352892(n); m = max(m,bigomega(n))); (m)); \\ Needs also code from A352892.
-
PARI
A352896(n) = if(n<=2,n-1,my(m=0); while(n>2, n = A341515(n); m = max(m,bigomega(n))); (m)); \\ Slower, but equivalent.
-
PARI
\\ Faster: A139391(n) = my(x = if(n%2, 3*n+1, n/2)); x/2^valuation(x, 2); \\ From A139391 A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res }; A352895(n) = { my(mw=1); while(n>1, n = A139391(n); mw = max(hammingweight(n),mw)); (mw); }; A352896(n) = if(1==n,0,A352895(A156552(n)));
Comments