A352995 Smallest positive integer whose cube ends with exactly n 3's.
1, 7, 77, 477, 6477, 46477, 446477, 5446477, 85446477, 385446477, 4385446477, 44385446477, 644385446477, 8644385446477, 38644385446477, 138644385446477, 5138644385446477, 115138644385446477, 15138644385446477, 5015138644385446477
Offset: 0
Keywords
Examples
a(0) = 1 because 1^3 = 1; a(1) = 7 because 7^3 = 343; a(2) = 77 because 77^3 = 456533; a(3) = 477 because 477^3 = 108531333; ------------------------------------------------------------------------------ | | a(n) | a'(n) | A225402(n-1) | concatenation | | n | with "exactly" | without "exactly" | = b(n-1) | b(n-1)...b(0) | ------------------------------------------------------------------------------ 1 7 7 7 ...7 2 77 77 7 ...77 3 477 477 4 ...477 ............................................................................ 15 138644385446477 138644385446477 1 ...138644385446477 16 5138644385446477 5138644385446477 5 ...5138644385446477 17 115138644385446477 15138644385446477 1 ...15138644385446477 18 15138644385446477 15138644385446477 0 ...015138644385446477 19 5015138644385446477 5015138644385446477 5 ...5015138644385446477 ------------------------------------------------------------------------------
Links
- Robert Israel, Table of n, a(n) for n = 0..996
Programs
-
Maple
f:= proc(n) local t,x; t:= 3/9*(10^n-1); x:= rhs(op(msolve(x^3=t,10^n))); while x^3 mod 10^(n+1) = 10*t+3 do x:= x + 10^n od; x end proc: f(0):= 1: map(f, [$0..20]); # Robert Israel, Jul 29 2025
Comments