cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353000 Quotients obtained when sigma(k) divides antisigma(k) with k = A076617(n), sigma (A000203) is the sum of divisors function and antisigma (A024816) is the sum of the non-divisors of n less than n function.

Original entry on oeis.org

0, 0, 4, 4, 4, 37, 25, 68, 49, 122, 115, 340, 544, 487, 959, 2167, 1926, 4837, 3847, 6757, 6452, 3620, 11353, 13934, 9371, 16353, 9211, 30949, 49702, 17330, 32575, 72544, 62348, 109769, 145892, 51270, 173914, 130687, 61665, 102887, 351770, 446927, 504949, 258079
Offset: 1

Views

Author

Bernard Schott, Apr 14 2022

Keywords

Comments

Note that the quotient obtained when sigma(k) divides k*(k+1)/2 with k = A076617(n) is a(n) + 1.

Examples

			A076617(6) = 95; sigma(95) = 120 and antisigma(95) = 4440, hence a(6) = 4440 / 120 = 37.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[(k*(k + 1)/2)/DivisorSigma[1, k] - 1, {k, 1, 10^6}], IntegerQ] (* Amiram Eldar, Apr 14 2022 *)
  • PARI
    is(n) = n*(n+1)/2%sigma(n) == 0; \\ A076617
    f(n) = n*(n+1)/(2*sigma(n)) - 1;
    lista(nn) = apply(f, select(is, [1..nn])); \\ Michel Marcus, Apr 15 2022

Formula

a(n) = A024816(A076617(n)) / A000203(A076617(n)).

Extensions

More terms from Amiram Eldar, Apr 14 2022