cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A353014 a(n) = Sum_{k=0..floor(n/3)} (n-3*k)^(n-2*k).

Original entry on oeis.org

1, 1, 4, 27, 257, 3133, 46737, 824568, 16792857, 387700668, 10005768898, 285445966496, 8919588913002, 302975146962245, 11115146328067250, 438000914977377939, 18450682450377791691, 827395864513198608177, 39352977767853205024131
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(n - 3*k)^(n - 2*k), {k, 0, Floor[n/3]}]; Array[a, 20, 0] (* Amiram Eldar, Apr 16 2022 *)
  • PARI
    a(n) = sum(k=0, n\3, (n-3*k)^(n-2*k));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-k*x^3)))

Formula

G.f.: Sum_{k>=0} (k * x)^k / (1 - k * x^3).

A353017 a(n) = Sum_{k=0..floor(n/3)} (n-3*k)^(3*k).

Original entry on oeis.org

1, 1, 1, 1, 2, 9, 28, 66, 190, 946, 4441, 16650, 67069, 380795, 2220697, 11142307, 58133022, 380165427, 2581541092, 15919859932, 101602799146, 758173118356, 5826902270129, 42158185020684, 316416126945385, 2656178496077301, 22725296418141937, 187568834724460765
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(n-3*k)^(3*k), {k, 0, Floor[n/3]}]; Array[a, 30, 0] (* Amiram Eldar, Apr 16 2022 *)
  • PARI
    a(n) = sum(k=0, n\3, (n-3*k)^(3*k));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k*x)^3)))

Formula

G.f.: Sum_{k>=0} x^k / (1 - (k * x)^3).

A353018 a(n) = Sum_{k=0..floor(n/3)} (n-3*k)^(n-3*k).

Original entry on oeis.org

1, 1, 4, 28, 257, 3129, 46684, 823800, 16780345, 387467173, 10000823800, 285328450956, 8916487915429, 302885107416053, 11112292154008972, 437902806868774804, 18447046958816967669, 827251374178490773149, 39346845978103406350228
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[3*k == n, 1, (n - 3*k)^(n - 3*k)], {k, 0, Floor[n/3]}]; Array[a, 20, 0] (* Amiram Eldar, Apr 16 2022 *)
  • PARI
    a(n) = sum(k=0, n\3, (n-3*k)^(n-3*k));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k)/(1-x^3))

Formula

G.f.: ( Sum_{k>=0} (k * x)^k )/(1 - x^3).

A357174 a(n) = n! * Sum_{k=0..floor(n/3)} (n - 3*k)^n/(n - 3*k)!.

Original entry on oeis.org

1, 1, 4, 27, 280, 5045, 134136, 4269223, 153188176, 6657007113, 371930499280, 25072409219891, 1872319689314856, 154583203638018493, 14784597239881491400, 1641532369038107170815, 201617558936011146124576, 26755058016106471234608017
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[(n - 3*k)^n/(n - 3*k)!, {k, 0, Floor[n/3]} ]; a[0] = 1; Array[a, 18, 0] (* Amiram Eldar, Sep 16 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n\3, (n-3*k)^n/(n-3*k)!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x)^k/(k!*(1-(k*x)^3)))))

Formula

E.g.f.: Sum_{k>=0} (k * x)^k / (k! * (1 - (k * x)^3)).
Showing 1-4 of 4 results.