cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353021 a(n) = Sum_{l=1..n} Sum_{k=1..l} Sum_{j=1..k} Sum_{i=1..j} (l*k*j*i)^2.

Original entry on oeis.org

0, 1, 341, 13013, 196053, 1733303, 10787231, 52253971, 209609235, 725520510, 2230238010, 6217887390, 15973440990, 38276304066, 86383520146, 185042663146, 378620563178, 743881306623, 1409531082531, 2585397711611, 4605062303611
Offset: 0

Views

Author

Roudy El Haddad, Apr 17 2022

Keywords

Comments

a(n) is the sum of all products of four squares of positive integers up to n, i.e., the sum of all products of four elements from the set of squares {1^2, ..., n^2}.

Crossrefs

Cf. A354021 (for distinct squares).
Cf. A000290 (squares), A000330 (sum of squares), A060493 (for two squares), A351105 (for three squares).
Cf. A000915 (for power 1).

Programs

  • PARI
    {a(n) = n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(2*n + 1)*(2*n + 3)*(2*n + 5)*(2*n + 7)*(5*n - 2)*(35*n^2 - 28*n + 9)/5443200};
    
  • Python
    def A353021(n): return n*(n*(n*(n*(n*(n*(n*(n*(8*n*(n*(70*n*(5*n + 84) + 40417) + 144720) + 2238855) + 2050020) + 207158) - 810600) - 58505) + 322740) + 7956) - 45360)//5443200 # Chai Wah Wu, May 14 2022

Formula

a(n) = n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(2*n + 1)*(2*n + 3)*(2*n + 5)*(2*n + 7)*(5*n - 2)*(35*n^2 - 28*n + 9)/5443200.
a(n) = binomial(2*n+8,9)*(5*n - 2)*(35*n^2 - 28*n + 9)/(5!*4).