A353021 a(n) = Sum_{l=1..n} Sum_{k=1..l} Sum_{j=1..k} Sum_{i=1..j} (l*k*j*i)^2.
0, 1, 341, 13013, 196053, 1733303, 10787231, 52253971, 209609235, 725520510, 2230238010, 6217887390, 15973440990, 38276304066, 86383520146, 185042663146, 378620563178, 743881306623, 1409531082531, 2585397711611, 4605062303611
Offset: 0
Links
- Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums, Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199. See Theorem 4.8 for m = 4 and p = 2.
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Crossrefs
Programs
-
PARI
{a(n) = n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(2*n + 1)*(2*n + 3)*(2*n + 5)*(2*n + 7)*(5*n - 2)*(35*n^2 - 28*n + 9)/5443200};
-
Python
def A353021(n): return n*(n*(n*(n*(n*(n*(n*(n*(8*n*(n*(70*n*(5*n + 84) + 40417) + 144720) + 2238855) + 2050020) + 207158) - 810600) - 58505) + 322740) + 7956) - 45360)//5443200 # Chai Wah Wu, May 14 2022
Formula
a(n) = n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(2*n + 1)*(2*n + 3)*(2*n + 5)*(2*n + 7)*(5*n - 2)*(35*n^2 - 28*n + 9)/5443200.
a(n) = binomial(2*n+8,9)*(5*n - 2)*(35*n^2 - 28*n + 9)/(5!*4).
Comments