cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353025 Terms of A352991 which are perfect powers.

Original entry on oeis.org

1, 13527684, 34857216, 65318724, 73256481, 81432576, 139854276, 152843769, 157326849, 215384976, 245893761, 254817369, 326597184, 361874529, 375468129, 382945761, 385297641, 412739856, 523814769, 529874361, 537219684, 549386721, 587432169, 589324176, 597362481, 615387249, 627953481, 653927184
Offset: 1

Views

Author

Marco Ripà, Apr 17 2022

Keywords

Comments

It appears that all terms are terms of A062503.
We note that a(n)=A352329(n) up to a(36)=A352329(36)=923187456, while the mentioned match does not hold starting from a(37)=14102987536 (since A352329(37)=1234608769).
There are no perfect powers among terms t which are permutations of 123_...(m - 1)_m for m == {2, 3, 5, 6} (mod 9). This is since 10 == 1 (mod 9) and also (1 + 0) == 1 (mod 9), so digit position has no effect. Hence, t == A134804(m) (mod 9). Now, if m is such that A134804(m) = {3, 6}, there is a lone factor of 3, which is not a perfect power (indeed).
Therefore, all terms are necessarily congruent modulo 9 to 0 or 1 (see Marco Ripà link).
All terms up to 10^34 are squares (in particular, there are 67 squares with no more than 17 digits). - Aldo Roberto Pessolano, May 12 2022

Examples

			75910168324 is a term since 75910168324 = 275518^2.
		

Crossrefs

Programs

  • Mathematica
    z = 1; Do[r = Range[k];
    n = ToExpression[StringJoin[ToString[#] & /@ r]];
    If[And[Mod[n, 9] != 3, Mod[n, 9] != 6], d = DigitCount[n];
      s = IntegerPart[Sqrt[10^(IntegerLength[n] - 1)]];
      f = IntegerPart[Sqrt[10^(IntegerLength[n])]];
      Do[y = x^2;
       If[DigitCount[y] == d, c = True;
        Do[If[Not[StringContainsQ[ToString[y], ToString[i]]],
          c = False], {i, 10, k}]; If[c, Print[z, " ", y]; z++]], {x, s,
        f}]], {k, 1, 10}] (* Aldo Roberto Pessolano, May 12 2022 *)

Formula

Digit sum of a(n) is always congruent to 0 or 1 modulo 9.
a(n) = m^2, where the integer m := m(n) is not a perfect power itself (conjectured).