Aldo Roberto Pessolano has authored 5 sequences.
A355420
Integers whose third power is a digital permutation of a term in A007908.
Original entry on oeis.org
1, 2326, 308344, 416308, 22330489, 23584549, 25262887, 100369113, 103697628, 112085871, 117764571, 123236271, 128235558, 480765411, 487901778, 492021537, 498423726, 507761406, 520620501, 552317646, 622410993, 2231515936, 2245722316, 2259865441, 2277355234
Offset: 1
2326 is a term since 2326^3 = 12584301976 is a digital permutation of 12345678910 = A007908(10).
308344 is a term since 308344^3 = 29316121031171584 is a permutation of the digits of A007908(13).
A307385
Decimal expansion of the constant S_2* = Sum_{j>=1} prime((2*j + 1) - 1)!/prime((2*j + 2) - 1)!.
Original entry on oeis.org
0, 4, 5, 2, 9, 4, 3, 4, 8, 8, 5, 0
Offset: 0
A307384
Decimal expansion of the constant S_1* = Sum_{j>=1} prime((2*j) - 1)!/prime((2*j + 1) - 1)!.
Original entry on oeis.org
0, 8, 5, 1, 6, 1, 9, 1, 0, 9, 8, 5
Offset: 0
A307383
Decimal expansion of the constant S_1* + S_2* = Sum_{j>=1} prime((j + 1) - 1)!/prime((j + 2) - 1)!.
Original entry on oeis.org
1, 3, 0, 4, 5, 6, 2, 5, 9, 8, 3, 5
Offset: 0
S_1* + S_2* = 0.130456269835...
A306780
Decimal expansion of the constant S_1 - S_2 = Sum_{j>=1} (-1)^(j+1)*(prime(j)!/prime(j + 1)!).
Original entry on oeis.org
3, 1, 5, 8, 8, 8, 8, 1, 9, 3, 5, 0
Offset: 0
S_1 - S_2 = 0.315888819350...
-
sumalt(j=1, (-1)^(j+1)*(prime(j)!/prime(j + 1)!)) \\ Michel Marcus, Apr 02 2019 \\ Needs default(realprecision, 10^4) Jinyuan Wang, May 19 2019
Comments