A353030 a(n) is the first emirp p such that there are exactly n unordered pairs (q,r) of emirps with p = q*r + q + r.
13, 1439, 100799, 3548879, 14061599, 38342303, 120355199, 12555446399
Offset: 0
Examples
a(3) = 3548879 because 3548879 = 17*197159 + 17 + 197159 = 359*9857 + 359 + 9857 = 953*3719 + 953 + 3719 and 3548879, 17, 197159, 359, 9857, 953, 3719 are emirps.
Links
- David A. Corneth, Upper bounds on a(0)..a(30).
Programs
-
Maple
revdigs:= proc(n) local L, i; L:= convert(n, base, 10); add(L[-i]*10^(i-1), i=1..nops(L)) end proc: isemirp:= proc(p) local r; if not isprime(p) then return false fi; r:= revdigs(p); r <> p and isprime(r) end proc: g:= proc(n) local p,q, t,count; count:= 0; for t in select(`<`,numtheory:-divisors(n+1),floor(sqrt(n+1))) do if isemirp(t-1) and isemirp((n+1)/t-1) then count:= count+1; fi od; count end proc: V:= Array(0..6): vcount:= 0: p:= 2: while vcount < 7 do p:= nextprime(p); d:= ilog10(p); p1:= floor(p/10^d); if p1=2 then p:= nextprime(3*10^d) elif member(p1,{4,5,6}) then p:= nextprime(7*10^d) elif p1=8 then p:= nextprime(9*10^d) fi; if isemirp(p) then v:= g(p); if V[v] = 0 then vcount:= vcount+1; V[v]:= p; fi; fi od: convert(V,list);
Extensions
a(7) from David A. Corneth, Jan 14 2023
Comments