cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353030 a(n) is the first emirp p such that there are exactly n unordered pairs (q,r) of emirps with p = q*r + q + r.

Original entry on oeis.org

13, 1439, 100799, 3548879, 14061599, 38342303, 120355199, 12555446399
Offset: 0

Views

Author

J. M. Bergot and Robert Israel, Apr 18 2022

Keywords

Comments

a(n) is the first prime p such that the digit-reversal rev(p) of p is a prime and there are exactly n pairs (q,r) of primes such that q < r, rev(q) and rev(r) are primes, and p = q*r + q + r.
From David A. Corneth, Jan 14 2023: (Start)
a(8) <= 121347071999, a(9) <= 195271876799, a(10) <= 10175362797599, a(11) <= 17482966300799.
For n >= 2, n == 3 (mod 4) and (n + 1)/4 has at least 2*n divisors. (End)

Examples

			a(3) = 3548879 because 3548879 = 17*197159 + 17 + 197159 = 359*9857 + 359 + 9857 = 953*3719 + 953 + 3719 and 3548879, 17, 197159, 359, 9857, 953, 3719 are emirps.
		

Crossrefs

Programs

  • Maple
    revdigs:= proc(n) local L, i; L:= convert(n, base, 10); add(L[-i]*10^(i-1), i=1..nops(L)) end proc:
    isemirp:= proc(p) local r;
       if not isprime(p) then return false fi;
       r:= revdigs(p);
       r <> p and isprime(r)
    end proc:
    g:= proc(n) local p,q, t,count;
      count:= 0;
      for t in select(`<`,numtheory:-divisors(n+1),floor(sqrt(n+1))) do
        if isemirp(t-1) and isemirp((n+1)/t-1) then
           count:= count+1;
        fi
      od;
      count
    end proc:
    V:= Array(0..6): vcount:= 0:
    p:= 2:
    while vcount < 7 do
      p:= nextprime(p);
      d:= ilog10(p);
      p1:= floor(p/10^d);
      if p1=2 then p:= nextprime(3*10^d)
      elif member(p1,{4,5,6}) then p:= nextprime(7*10^d)
      elif p1=8 then p:= nextprime(9*10^d)
      fi;
      if isemirp(p) then
        v:= g(p);
        if V[v] = 0 then vcount:= vcount+1; V[v]:= p; fi;
      fi
    od:
    convert(V,list);

Extensions

a(7) from David A. Corneth, Jan 14 2023