A353054 Numbers k such that placing the last digit first gives 2k+1.
1052, 26315, 15789473, 3157894736, 421052631578, 2105263157894, 36842105263157, 1052631578947368421052, 26315789473684210526315, 15789473684210526315789473, 3157894736842105263157894736, 421052631578947368421052631578, 2105263157894736842105263157894, 36842105263157894736842105263157
Offset: 1
Examples
2*1052 + 1 = 2105. Thus, 1052 is in this sequence.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..389
Programs
-
Mathematica
Select[Range[100000000], FromDigits[Prepend[Drop[IntegerDigits[#], -1], Last[IntegerDigits[#]]]] == 2 # + 1 &]
-
PARI
f(n) = if (n < 10, n, my(d=digits(n)); fromdigits(concat(d[#d], Vec(d, #d-1)))); isok(m) = f(m) == 2*m+1; \\ Michel Marcus, Apr 21 2022
-
Python
from itertools import count, islice def A353054_gen(): # generator of terms for l in count(1): a, b = 10**l-2, 10**(l-1)-2 for m in range(1,10): q, r = divmod(m*a-1,19) if r == 0 and b <= q - 2 <= a: yield 10*q+m A353054_list = list(islice(A353054_gen(),20)) # Chai Wah Wu, Apr 23 2022
Extensions
a(4)-a(7) from Amiram Eldar, Apr 22 2022
a(8)-a(14) from Chai Wah Wu, Apr 23 2022
Comments