cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A353162 Expansion of e.g.f. exp(Sum_{p prime} p * x^p).

Original entry on oeis.org

1, 0, 4, 18, 48, 1320, 4200, 115920, 994560, 11793600, 264055680, 2601244800, 67761429120, 1067726499840, 21513457405440, 485310649824000, 9925206939648000, 254012624170905600, 6174538264806912000, 160933619800835481600, 4458470291543671603200
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, isprime(k)*k*x^k))))
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, isprime(k)*k^2*a(n-k)/(n-k)!));

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{p<=n, p prime} p^2 * a(n-p)/(n-p)!.

A353165 Expansion of e.g.f. 1/(1 - Sum_{p prime} x^p / (p-1)!).

Original entry on oeis.org

1, 0, 2, 3, 24, 125, 900, 7987, 72240, 817488, 9536940, 127816931, 1830739680, 28597812685, 481145656992, 8650951895040, 166376275228800, 3392537585542577, 73342277086465296, 1672523286398099407, 40158685461798481560, 1012415090497566344400
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, isprime(k)*x^k/(k-1)!))))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, isprime(k)*k*binomial(n, k)*a(n-k)));

Formula

a(0) = 1; a(n) = Sum_{p<=n, p prime} p * binomial(n,p) * a(n-p).
Showing 1-2 of 2 results.