cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353192 Expansion of e.g.f. 1/(1 - Sum_{k>=1} phi(k) * x^k / k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 1, 3, 16, 110, 986, 10202, 126288, 1770120, 27939192, 489658632, 9455296896, 198951693360, 4537680805776, 111426422418768, 2931467216681856, 82273083792879744, 2453340521239749504, 77458777017799833216, 2581489882182061744128
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    phi[k_] := phi[k] = EulerPhi[k]; a[0] = 1; a[n_] := a[n] = Sum[(k - 1)! * phi[k] * Binomial[n, k] * a[n - k], {k, 1, n}]; Array[a, 20, 0] (* Amiram Eldar, Apr 30 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, eulerphi(k)*x^k/k))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (j-1)!*eulerphi(j)*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A074930(k) * binomial(n,k) * a(n-k).